Page last updated: 2024-09-03

gyki 53655 and organophosphonates

gyki 53655 has been researched along with organophosphonates in 3 studies

Compound Research Comparison

Studies
(gyki 53655)
Trials
(gyki 53655)
Recent Studies (post-2010)
(gyki 53655)
Studies
(organophosphonates)
Trials
(organophosphonates)
Recent Studies (post-2010) (organophosphonates)
1110229,9688803,596

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (66.67)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's1 (33.33)2.80

Authors

AuthorsStudies
Banczerowski-Pelyhe, I; Csúcs, G; Tarnawa, I; Világi, I1
Dai, WM; Ebert, B; Lambert, JD; Madsen, U1
Boesen, T; Dorosz, J; Gajhede, M; Kastrup, JS; Krintel, C; Larsen, AH; Mirza, O; Thorsen, TS; Venskutonytė, R1

Other Studies

3 other study(ies) available for gyki 53655 and organophosphonates

ArticleYear
An increased intensity of N-methyl-D-aspartate (NMDA) but not non-NMDA receptor activation may be responsible for the enhancement of excitatory processes in the neocortex of two-week-old rats: a brain slices study.
    Neuroscience letters, 1996, Jan-19, Volume: 203, Issue:2

    Topics: Action Potentials; Animals; Animals, Suckling; Benzodiazepines; Binding, Competitive; Cerebral Cortex; Electric Stimulation; Excitatory Amino Acid Antagonists; Organophosphonates; Pentanoic Acids; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Somatosensory Cortex; Synaptic Transmission; Valine

1996
Studies of the antagonist actions of (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl] propionic acid (ATPO) on non-NMDA receptors in cultured rat neurones.
    British journal of pharmacology, 1998, Volume: 125, Issue:7

    Topics: Adrenal Cortex Hormones; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Cells, Cultured; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamates; Isoxazoles; Kainic Acid; Neurons; Organophosphonates; Rats; Rats, Sprague-Dawley; Receptors, AMPA

1998
Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2.
    The FEBS journal, 2021, Volume: 288, Issue:3

    Topics: Allosteric Regulation; Animals; Benzodiazepines; Crystallography, X-Ray; Excitatory Amino Acid Antagonists; HEK293 Cells; Humans; Models, Molecular; Molecular Structure; Organophosphonates; Protein Binding; Protein Domains; Quinoxalines; Rats; Receptors, AMPA; Recombinant Proteins; Sf9 Cells; Spodoptera

2021