gx-15-070 and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

gx-15-070 has been researched along with benzyloxycarbonylleucyl-leucyl-leucine-aldehyde* in 2 studies

Other Studies

2 other study(ies) available for gx-15-070 and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

ArticleYear
[Synergistic anti-tumor effect of obatoclax and MG-132 in esophageal cancer cell line CaES-17].
    Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 2016, Volume: 36, Issue:4

    To explore whether MG-132 could enhance the anti-tumor activity of obatoclax against esophageal cancer cell line CaES-17.. MTT assay was used to determine the cytotoxicity of obatoclax and MG-132 in CaES-17 cells. The IC(50) of obatoclax and MG-132 were used to determine the molar ratio (1:2.4) of the two drugs for combined treatment of the cells. The concentrations of obatoclax and MG-132 ranged from 1/8 IC(50) to 4 IC(50) after serial dilution, and their combination index (CI) was calculated using CompuSyn software. The expression of ubiquitin and the cleavage of PARP, caspase-9, phospho-histone H3 and phospho-aurora A/B/C in the exposed cells were examined with Western blotting; the cell apoptosis was measured by flow cytometry with Annexin V staining, and the percentage of cells in each cell cycle phase was also determined by flow cytometry.. The CI of obatoclax and MG-132 was 0.296 for a 50% inhibition of Caes-17 cells and was 0.104 for a 95% inhibition. The cells treated with obatoclax or MG-132 alone showed increased expression of ubiquitin and cleavage of PARP and caspase-9. Compared with the cells treated with obatoclax or MG-132 alone, the cells with a combined treatment exhibited significantly increased expression of ubiquitin, cleavage of PARP and caspase-9, and expression of phospho-Histone H3 (P<0.05). The combined treatment of the cells also resulted in significantly increased expression of phospho-Aurora A/B/C compared with obatoclax treatment alone. The cells with the combined treatment showed significantly higher percentages of apoptotic cells and cells in sub-G(1) and G(2)/M phases compared with the cells treated with either of the drugs (P<0.05).. Obatoclax combined with MG-132 shows a significant synergistic anti-tumor effect against esophageal cancer CaES-17 cells by inducing apoptosis and cell cycle arrest.

    Topics: Apoptosis; Caspase 9; Cell Cycle Checkpoints; Cell Line, Tumor; Esophageal Neoplasms; Histones; Humans; Indoles; Leupeptins; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Pyrroles

2016
Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik.
    Molecular and cellular biology, 2014, Sep-15, Volume: 34, Issue:18

    In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.

    Topics: Adaptor Proteins, Signal Transducing; Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Boronic Acids; Bortezomib; Cell Line, Tumor; Cells, Cultured; Cyclin T; Cyclin-Dependent Kinase 9; Cycloheximide; Flavonoids; Gene Expression Regulation; Heat-Shock Proteins; Humans; Indoles; Leupeptins; Membrane Proteins; Mice; Mice, Knockout; Mitochondrial Proteins; Piperidines; Protein Transport; Pyrazines; Pyrroles; RNA, Small Interfering; Sequestosome-1 Protein

2014