gw-501516 and ciglitazone

gw-501516 has been researched along with ciglitazone* in 3 studies

Other Studies

3 other study(ies) available for gw-501516 and ciglitazone

ArticleYear
Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells.
    Journal of cancer research and clinical oncology, 2011, Volume: 137, Issue:1

    Peroxisome-proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids and their derivatives. PPAR subtypes PPARγ and PPARβ/δ are suspected to modulate cancer development in the colon, but their exact role is still discussed controversially.. The present study investigated the impact of PPARγ and PPARβ/δ on vascular endothelial growth factor (VEGF) and cyclooxygenase 2 (COX-2) expressions induced by synthetic and physiological agonists in the colorectal tumor cell lines SW480 and HT29 using reporter gene assays, qRT-PCR and ELISA.. Activation of both PPARγ and PPARβ/δ induced expression of VEGF mRNA and protein in a PPAR-dependent way. The PPARγ agonists ciglitazone and PGJ(2) were the most effective inducers with up to ninefold and threefold increases in VEGF mRNA in SW480 and HT29 cultures, respectively. VEGF secretion was doubled in both cell lines. The PPARβ/δ agonists GW501516 and PGI(2) caused stimulations of only 1.5-fold in both cell lines. In addition, all PPAR agonists induced COX-2 mRNA and secretion of the COX-2 product PGE(2) in HT29 cells. However, this effect was not blocked by knock-down of PPAR expression nor was it essential for VEGF expression as shown by the lack of effect of the COX-2 inhibitor SC236.. In summary, our results identify both PPARγ and PPARβ/δ as an alternative COX-independent mechanism of VEGF induction in colorectal tumor cells.

    Topics: Cell Line, Tumor; Colorectal Neoplasms; Cyclooxygenase 2; Humans; Peroxisome Proliferator-Activated Receptors; PPAR delta; PPAR gamma; PPAR-beta; RNA, Messenger; Thiazoles; Thiazolidinediones; Vascular Endothelial Growth Factor A

2011
Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats.
    Neuropharmacology, 2005, Volume: 48, Issue:8

    The fatty-acid ethanolamide, oleoylethanolamide (OEA), is a naturally occurring lipid that regulates feeding and body weight [Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., Piomelli, D., 2001. An anorexic lipid mediator regulated by feeding. Nature 414, 209-212], and serves as an endogenous agonist of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth., A., Luecke, H., Di Giacomo, B., Tarzia, G., Piomelli, D., 2003. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93], a ligand-activated transcription factor that regulates several aspects of lipid metabolism [. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688]). OEA reduces food intake in wild-type mice, but not in mice deficient in PPAR-alpha (PPAR-alpha(-/-)), an effect that is also observed with the PPAR-alpha agonists Wy-14643 and GW7647 [Brown, P.J., Chapman, J.M., Oplinger, J.A., Stuart, L.W., Willson, T.M. and Wu, Z., 2000. Chemical compounds as selective activators of PPAR-alpha. PCT Int. Appl., 32; . The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527-550]. By contrast, specific agonists of PPAR-delta/beta (GW501516) or PPAR-gamma (ciglitazone) have no such effect. In obese Zucker rats, which lack functional leptin receptors, OEA reduces food intake and lowers body-weight gain along with plasma lipid levels. Similar effects are seen in diet-induced obese rats and mice. In the present study, we report that subchronic OEA treatment (5mgkg(-1), intraperitoneally, i.p., once daily for two weeks) in Zucker rats initiates transcription of PPAR-alpha and other PPAR-alpha target genes, including fatty-acid translocase (FAT/CD36), liver fatty-acid binding protein (L-FABP), and uncoupling protein-2 (UCP-2). Moreover, OEA decreases neutral lipid content in hepatocytes, as assessed by Oil red O staining, as well as serum cholesterol and triglyceride levels. The results suggest that OEA regulates lipid metabolism and that this effect may contribute to its anti-obesity properties.

    Topics: Animals; Body Weight; Butyrates; CD36 Antigens; Cholesterol; Coenzyme A Ligases; Eating; Endocannabinoids; Fatty Acid-Binding Proteins; Hepatocytes; Hyperlipidemias; Ion Channels; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondrial Proteins; Obesity; Oleic Acids; Phenylurea Compounds; PPAR alpha; Pyrimidines; Rats; Rats, Inbred WF; Rats, Zucker; RNA, Messenger; Thiazoles; Thiazolidinediones; Triglycerides; Uncoupling Protein 2

2005
Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member gamma, but not alpha or delta.
    Carcinogenesis, 2005, Volume: 26, Issue:10

    Multifaceted evidence links the development of liver tumours to the activation and proliferation of adult liver progenitor (oval) cells during the early stages of chronic liver injury. The aim of this study was to examine the role of the peroxisome proliferator activated receptors (PPARs): PPARalpha, delta and gamma, in mediating the behaviour of liver progenitor cells during pre-neoplastic disease and to investigate their potential as therapeutic targets for the treatment of chronic liver injury. We observed increased liver expression of PPARalpha and gamma in concert with expanding oval cell numbers during the first 21 days following commencement of the choline deficient, ethionine supplemented (CDE) dietary model of carcinogenic liver injury in mice. Both primary and immortalized liver progenitor cells were found to express PPARalpha, delta and gamma, but not gamma2, the alternate splice form of PPARgamma. WY14643 (PPARalpha agonist), GW501516 (PPARdelta agonist) and ciglitazone (PPARgamma agonist) were tested for their ability to modulate the behaviour of p53-immortalized liver (PIL) progenitor cell lines in vitro. Both PPARdelta and gamma agonists induced dose-dependent growth inhibition and apoptosis of PIL cells. In contrast, the PPARalpha agonist had no effect on PIL cell growth. None of the drugs affected the maturation of PIL cells along either the hepatocytic or biliary lineages, as judged by their patterns of hepatic gene expression prior to and following treatment. Administration of the PPARgamma agonist ciglitazone to mice fed with the CDE diet for 14 days resulted in a significantly diminished oval cell response and decreased fibrosis compared with those receiving placebo. In contrast, GW501516 did not affect oval cell numbers or liver fibrosis, but inhibited CDE-induced hepatic steatosis. In summary, PPARgamma agonists reduce oval cell proliferation and fibrosis during chronic liver injury and may be useful in the prevention of hepatocellular carcinoma.

    Topics: Animals; Cell Division; Cell Line; Cell Survival; Ethionine; Liver; Male; Mice; Mice, Inbred C57BL; PPAR alpha; PPAR gamma; Receptors, Cytoplasmic and Nuclear; Stem Cells; Thiazoles; Thiazolidinediones

2005