guanosine-triphosphate and tiazofurin

guanosine-triphosphate has been researched along with tiazofurin* in 37 studies

Reviews

3 review(s) available for guanosine-triphosphate and tiazofurin

ArticleYear
Targeting signal transduction.
    Advances in enzyme regulation, 2003, Volume: 43

    Topics: Animals; Antimetabolites; Antineoplastic Agents; Cell Line, Tumor; Guanosine Triphosphate; Humans; Ligands; Neoplasms; Ribavirin; Signal Transduction

2003
Consequences of IMP dehydrogenase inhibition, and its relationship to cancer and apoptosis.
    Current medicinal chemistry, 1999, Volume: 6, Issue:7

    Inosine 5 -monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme for the synthesis of GTP and dGTP. Two isoforms of IMPDH have been identified. IMPDH Type I is ubiquitous and predominantly present in normal cells, whereas IMPDH Type II is predominant in malignant cells. IMPDH plays an important role in the expression of cellular genes, such as p53, c-myc and Ki-ras. IMPDH activity is transformation and progression linked in cancer cells. IMPDH inhibitors, tiazofurin, selenazofurin, and benzamide riboside share similar mechanism of action and are metabolized to their respective NAD analogues to exert antitumor activity. Tiazofurin exhibits clinical responses in patients with acute myeloid leukemia and chronic myeloid leukemia in blast crisis. These responses relate to the level of the NAD analogue formed in the leukemic cells. Resistance to tiazofurin and related IMPDH inhibitors relate mainly to a decrease in NMN adenylyltransferase activity. IMPDH inhbitors induce apoptosis. IMPDH inhitors are valuable probes for examining biochemical functions of GTP as they selectively reduce guanylate concentration. Incomplete depletion of cellular GTP level seems to down-regulate G-protein function, thereby inhibit cell growth or induce apoptosis. Inosine 5'-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) catalyzes the dehydrogenation of IMP to XMP utilizing NAD as the proton acceptor. Studies have demonstrated that IMPDH is a rate-limiting step in the de novo synthesis of guanylates, including GTP and dGTP. The importance of IMPDH is central because dGTP is required for the DNA synthesis and GTP plays a major role not only for the cellular activity but also for cellular regulation. Two isoforms of IMPDH have been demonstrated. IMPDH Type I is ubiquitous and predominately present in normal cells, whereas the IMPDH Type II enzyme is predominant in malignant cells. Although guanylates could be salvaged from guanine by the enzyme hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8), the level of circulating guanine is low in dividing cells and this route is probably insufficient to satisfy the needs of guanylates in the cells.

    Topics: Antineoplastic Agents; Apoptosis; cdc25 Phosphatases; Clinical Trials as Topic; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Guanosine Triphosphate; HL-60 Cells; Humans; IMP Dehydrogenase; Leukemia, Myeloid; Neoplasms; Nucleosides; Organoselenium Compounds; Ovarian Neoplasms; Protein Tyrosine Phosphatases; Ribavirin; Ribonucleosides; RNA, Messenger; Time Factors; Tumor Cells, Cultured

1999
Role of purine metabolism in regulation of signal transduction in human carcinoma cells.
    Advances in experimental medicine and biology, 1998, Volume: 431

    Topics: Antimetabolites, Antineoplastic; Deoxyguanine Nucleotides; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Inosine Monophosphate; Leukemia; Neoplasms; Purines; Ribavirin; Signal Transduction

1998

Trials

1 trial(s) available for guanosine-triphosphate and tiazofurin

ArticleYear
Tiazofurin down-regulates expression of c-Ki-ras oncogene in a leukemic patient.
    Cancer communications, 1991, Volume: 3, Issue:3

    The increased activity in cancer cells of inosine 5'-monophosphate dehydrogenase (IMP DH, EC 1.1.1.205), the rate-limiting enzyme of de novo GTP biosynthesis, was suggested as a sensitive target for chemotherapy. Tiazofurin (NSC 286193), through its conversion to the active metabolite, thiazole-4-carboxamide adenine dinucleotide (TAD), is a strong inhibitor of IMP DH. In our clinical trial, tiazofurin caused return to the chronic phase in patients with chronic granulocytic leukemia in blast crisis (Tricot, G.; Jayaram, H.N.; Weber, G.; Hoffman, R. Tiazofurin: Biological effects and clinical uses. Int. J. Cell Cloning 8:161-170; 1990). In K562 human leukemic cells, tiazofurin down-regulated the expression of c-Ki-ras and c-myc oncogenes, which was followed by induced differentiation. We now report down-regulation by tiazofurin of the c-Ki-ras oncogene in a patient with chronic granulocytic leukemia in blast crisis. A single tiazofurin infusion (2,200 mg/m2) on days one and two decreased IMP dehydrogenase activity (the apparent t1/2 was 30 min), GTP concentration (the apparent t1/2 was 6 hr), and expression of ras (the apparent t1/2 was 8 hr) and c-myc (the apparent t1/2 was 38.5 hr) oncogenes in the leukemic cells. No further tiazofurin was given, because on days three and four the chemotherapeutic impact became evident in a tumor-lysis syndrome and the blast cells were cleared from the periphery by day five. The decrease in IMP DH activity, GTP concentration, and expression of c-Ki-ras oncogene were early markers of the successful chemotherapeutic impact of tiazofurin in a patient with chronic granulocytic leukemia in blast crisis.

    Topics: Adenine Nucleotides; Antimetabolites, Antineoplastic; Blast Crisis; Blotting, Northern; Down-Regulation; Gene Expression Regulation; Genes, ras; Guanosine Triphosphate; Humans; Hypoxanthine; Hypoxanthines; IMP Dehydrogenase; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Male; Middle Aged; Pilot Projects; Ribavirin; RNA; Uric Acid

1991

Other Studies

33 other study(ies) available for guanosine-triphosphate and tiazofurin

ArticleYear
Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin.
    Cancer gene therapy, 2013, Volume: 20, Issue:7

    Colorectal cancer cells exhibit limited cytotoxicity towards Tiazofurin, a pro-drug metabolized by cytosolic nicotinamide mononucleotide adenylyltransferase2 (NMNAT2) to thiazole-4-carboxamide adenine dinucleotide, a potent inhibitor of inosine 5'-monophosphate dehydrogenase required for cellular guanylate synthesis. We tested the hypothesis that colorectal cancer cells that exhibit low levels of NMNAT2 and are refractory to Tiazofurin can be rendered sensitive to Tiazofurin by overexpressing NMNAT2. Transfection of hNMNAT2 resulted in a six- and threefold cytoplasmic overexpression in Caco2 and HT29 cell lines correlating with Tiazofurin-induced enhanced cell-kill. Folate receptors expressed on the cell surface of 30-50% colorectal carcinomas were exploited for cellular targeting with Tiazofurin encapsulated in folate-tethered nanoparticles. Our results indicated that in wild-type colorectal cancer cells, free Tiazofurin-induced EC50 cell-kill was 1500-2000 μM, which was reduced to 66-156 μM in hNMNAT2-overexpressed cells treated with Tiazofurin encapsulated in non-targeted nanoparticles. This efficacy was improved threefold by encapsulating Tiazofurin in folate-tethered nanoparticles to obtain an EC(50) cell-kill of 22-59 μM, an equivalent of 100-300 mg m(-2) (one-tenth of the approved dose of Tiazofurin in humans), which will result in minimal toxicity leading to cancer cell-kill. This proof-of-principle study suggests that resistance of colorectal cancer cell-kill to Tiazofurin can be overcome by sequentially overexpressing hNMNAT2 and then facilitating the uptake of Tiazofurin by folate-tethered nanoparticles, which enter cells via folate receptors.

    Topics: Antimetabolites, Antineoplastic; Cell Line, Tumor; Cell Survival; Colorectal Neoplasms; Drug Carriers; Drug Resistance, Neoplasm; Fluoresceins; Folic Acid Transporters; Gene Expression; Gene Knockdown Techniques; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Isoenzymes; Nanoparticles; Nicotinamide-Nucleotide Adenylyltransferase; Protein Transport; Ribavirin; RNA, Small Interfering; Transfection

2013
Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus.
    Journal of virology, 2007, Volume: 81, Issue:21

    The broad spectrum of antiviral activity of ribavirin (RBV) lies in its ability to inhibit IMP dehydrogenase, which lowers cellular GTP. However, RBV can act as a potent mutagen for some RNA viruses. Previously we have shown a lack of correlation between antiviral activity and GTP repression for Hantaan virus (HTNV) and evidence for RBV's ability to promote error-prone replication. To further explore the mechanism of RBV, GTP levels, specific infectivity, and/or mutation frequency was measured in the presence of RBV, mycophenolic acid (MPA), selenazofurin, or tiazofurin. While all four drugs resulted in a decrease in the GTP levels and infectious virus, only RBV increased the mutation frequency of viral RNA (vRNA). MPA, however, could enhance RBV's mutagenic effect, which suggests distinct mechanisms of action for each. Therefore, a simple drop in GTP levels does not drive the observed error-prone replication. To further explore RBV's mechanism of action, we made a comprehensive analysis of the mutation frequency over several RBV concentrations. Of importance, we observed that the viral population reached a threshold after which mutation frequency did not correlate with a dose-dependent decrease in the level of vRNA, PFU, or [RTP]/[GTP] (where RTP is ribavirin-5'-triphosphate) over these same concentrations of RBV. Modeling of the relationship of mutation frequency and drug concentration showed an asymptotic relationship at this point. After this threshold, approximately 57% of the viral cDNA population was identical to the wild type. These studies revealed a lethal threshold, after which we did not observe a complete loss of the quasispecies structure of the wild-type genome, although we observed extinction of HTNV.

    Topics: Animals; Antiviral Agents; Chlorocebus aethiops; Dose-Response Relationship, Drug; Gene Frequency; Genome, Viral; Guanosine Triphosphate; Hantaan virus; Mutation; Mycophenolic Acid; Organoselenium Compounds; Ribavirin; Ribonucleosides; RNA, Viral; Vero Cells

2007
Inhibitors of the IMPDH enzyme as potential anti-bovine viral diarrhoea virus agents.
    Antiviral chemistry & chemotherapy, 2002, Volume: 13, Issue:6

    Ribavirin and mycophenolic acid (MPA) are known inhibitors of the IMPDH enzyme (E.C. 1.1.1.205). This enzyme catalyzes the conversion of inosine monophosphate to xanthine monophosphate, leading eventually to a decrease in the intracellular level of GTP and dGTP. The antiviral effect against bovine viral diarrhoea virus (BVDV) of 15 analogues related to MPA was determined. MDBK cells were infected with the cytopathic strain of BVDV in presence or absence of test compounds. Viral RNA was extracted from the cell supernatant fluids and quantified by RT-PCR. Ribavirin showed a potent antiviral effect against BVDV with 90% effective concentration (EC90) of 4 microM. MPA along with several analogues, including both its corresponding aldehyde and alcohol, and modifications in the length of the side chain (C2- and C4-derivatives) were tested. We have identified previously unreported IMPDH inhibitors that have potent anti-BVDV activity, namely: C6-MPAlc (5), C6-MPA-Me (7), C4-MPAlc (8), C4-MPA (10) and C2-MAD (20). Most of these compounds inhibited the IMPDH enzyme in the nanomolar range (4-800 nM) in cell-free assays. Some compounds, such as mizoribine, which is a potent inhibitor of IMPDH in vitro (enzyme 50% inhibitory concentration IC50=4 nM), had no detectable anti-BVDV activity up to 100 microM. The compounds were essentially non-toxic to a confluent monolayer of MDBK cells. However, in exponentially growing cells, they showed minimal toxicity at 100 microM over a 24 h period, but the toxicity was more pronounced after 3 days [50% cytotoxic concentration (CC50) value ranged from 5 to 30 microM].

    Topics: Animals; Cattle; Cell Line; Computer Systems; Culture Media, Conditioned; Diarrhea Viruses, Bovine Viral; Dose-Response Relationship, Drug; Drug Design; Drug Evaluation, Preclinical; Enzyme Inhibitors; Guanosine Triphosphate; IMP Dehydrogenase; Kidney; Molecular Structure; Mycophenolic Acid; NAD; Nucleosides; Reverse Transcriptase Polymerase Chain Reaction; Ribavirin; Ribonucleosides; Viral Plaque Assay; Virus Replication

2002
[Application of tiazofurin in the study of regulation of AMP deaminase in intact malignant cells].
    Glas. Srpska akademija nauka i umetnosti. Odeljenje medicinskih nauka, 2002, Issue:47

    AMP deaminase has a key position in regulation of the pool of adenine nucleotides and energetics in malignant cells. The aim of this investigation was to elucidate mechanism of regulation of activity of AMP deaminase in intact tumor cells. Using tiazofurin, which profoundly decreases the level of GTP, and guanosine which markedly increases its concentration in the Ehrlich ascites tumor cells under aerobic conditions, we have shown that this nucleotide is probably the major regulator of AMP deaminase activity in situ. This regulation, however, should be considered in relation to the time and the changes which occur during transition of the cells from aerobic to anaerobic phase, and reverse, when other factors, like concentrations of the substrate and ATP are involved.

    Topics: AMP Deaminase; Animals; Antineoplastic Agents; Carcinoma, Ehrlich Tumor; Guanosine; Guanosine Triphosphate; Liver Neoplasms, Experimental; Mice; Rats; Rats, Sprague-Dawley; Ribavirin; Tumor Cells, Cultured

2002
Sir Hans A. Krebs Centenary Lecture: cancer and clinical targeting.
    Advances in enzyme regulation, 2001, Volume: 41

    Topics: Animals; Antineoplastic Agents; Apoptosis; Chromatography, High Pressure Liquid; Clinical Trials as Topic; Down-Regulation; Guanosine Triphosphate; History, 20th Century; Humans; Ischemia; Kidney Neoplasms; Leukemia; Models, Biological; Neoplasms; Ribavirin; Signal Transduction; Time Factors; Tumor Cells, Cultured

2001
Modulation of the in situ activity of tissue transglutaminase by calcium and GTP.
    The Journal of biological chemistry, 1998, Jan-23, Volume: 273, Issue:4

    Tissue transglutaminase (tTG) is a calcium-dependent enzyme that catalyzes the posttranslational modification of proteins by transamidation of specific polypeptide-bound glutamine residues. Previous in vitro studies have demonstrated that the transamidating activity of tTG requires calcium and is inhibited by GTP. To investigate the endogenous regulation of tTG, a quantitative in situ transglutaminase (TG) activity assay was developed. Treatment of human neuroblastoma SH-SY5Y cells with retinoic acid (RA) resulted in a significant increase in tTG levels and in vitro TG activity. In contrast, basal in situ TG activity did not increase concurrently with RA-induced increased tTG levels. However, stimulation of cells with the calcium-mobilizing drug maitotoxin (MTX) resulted in increases in in situ TG activity that correlated (r2 = 0.76) with increased tTG levels. To examine the effects of GTP on in situ TG activity, tiazofurin, a drug that selectively decreases GTP levels, was used. Depletion of GTP resulted in a significant increase in in situ TG activity; however, treatment of SH-SY5Y cells with a combination of MTX and tiazofurin resulted in significantly less in situ TG activity compared with treatment with MTX alone. This raised the possibility of calcium-dependent proteolysis due to the effects of tiazofurin, because in vitro GTP protects tTG against proteolysis by trypsin. Studies with a selective membrane permeable calpain inhibitor indicated that tTG is likely to be an endogenous substrate of calpain, and that depletion of GTP increases tTG degradation after elevation of intracellular calcium levels. TG activity was also increased in response to activation of muscarinic cholinergic receptors, which increases intracellular calcium through inositol 1,4,5-trisphosphate generation. The results of these experiments demonstrate that selective changes in calcium and GTP regulate the activity and levels of tTG in situ.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Antineoplastic Agents; Calcium; Calcium Channel Agonists; Calpain; Carbachol; Diazomethane; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Ionomycin; Ionophores; Marine Toxins; Muscarinic Agonists; Oligopeptides; Oxocins; Receptors, Retinoic Acid; Retinoid X Receptors; Ribavirin; Thapsigargin; Transcription Factors; Transglutaminases; Tumor Cells, Cultured

1998
IMP dehydrogenase inhibitor, tiazofurin, induces apoptosis in K562 human erythroleukemia cells.
    Cytometry, 1997, Feb-15, Volume: 30, Issue:1

    Tiazofurin, an anticancer drug which inhibits IMP dehydrogenase, decreases cellular GTP concentration, induces differentiation and down-regulates ras and myc oncogene expression, caused apoptosis of K562 cells in a time- and dose-dependent fashion. Apoptotic cells were detected by (1) flow cytometry, (2) electron microscopy, and (3) fluorescence in situ nick translation and confocal microscopy, while the DNA ladder was not detectable. The induced apoptosis was abrogated by guanosine which replenishes GTP pools through the guanosine salvage pathways, while it was enhanced by hypoxanthine, a competitive inhibitor of GPRT. The tiazofurin-mediated apoptosis may therefore be linked with the decrease of GTP and the consequent impairment of specific signal transduction pathways. Tiazofurin induced apoptosis also in lymphoblastic MOLT-4 cells, suggesting that this action is not confined to cells of the myeloid lineage, where the differentiating effects of the drug are more pronounced.

    Topics: Apoptosis; DNA Fragmentation; Enzyme Inhibitors; Flow Cytometry; Guanosine Triphosphate; Humans; Hypoxanthine; IMP Dehydrogenase; Leukemia, Erythroblastic, Acute; Ribavirin; Tumor Cells, Cultured

1997
Eicar (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis.
    The Journal of biological chemistry, 1993, Nov-25, Volume: 268, Issue:33

    EICAR (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide) is a cytostatic agent that inhibits murine leukemia L1210 and human lymphocyte CEM cells at a 50% inhibitory concentration of 0.80-1.4 microM, respectively. EICAR causes a rapid and marked inhibition of inosinate (IMP) dehydrogenase (EC 1.1.1.205) activity in intact L1210 and CEM cells reflected by a concentration-dependent accumulation of IMP and depletion of GTP and dGTP levels. EICAR 5'-monophosphate is a potent inhibitor of purified L1210 cell IMP dehydrogenase (Ki/Km 0.06). Inhibition of IMP dehydrogenase by EICAR 5'-monophosphate is competitive with respect to IMP. L1210 cells that were selected for resistance to the cytostatic action of EICAR proved to be adenosine kinase-deficient. Also, studies with other mutant L1210 and CEM cell lines revealed that adenosine kinase, as well as an alternative pathway, may be responsible for the conversion of EICAR to its 5'-monophosphate. Purified 2'-deoxycytidine kinase, 2'-deoxyguanosine kinase, cytosolic 5'-nucleotidase, and nicotinamide dinucleotide (NAD) pyrophosphorylase do not seem to be markedly involved in the metabolism of EICAR.

    Topics: Adenosine; Animals; Antineoplastic Agents; Cell Division; Deoxyguanine Nucleotides; Guanine; Guanosine; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Leukemia L1210; Lymphocytes; Mice; Mycophenolic Acid; Purine Nucleotides; Ribavirin; Ribonucleosides; Ribonucleotides; Tumor Cells, Cultured

1993
GM-CSF: modulation of biochemical and cytotoxic effects of tiazofurin in HL-60 cells.
    British journal of haematology, 1993, Volume: 84, Issue:3

    Cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF) or interleukin-3 (IL-3) recruit quiescent cells into the cell cycle and sensitize these cells towards cell cycle specific chemotherapeutic agents. We examined the in vitro effects of GM-CSF on HL-60 cells and tested its modulatory influence on biochemical and cytotoxic effects seen with tiazofurin, a potent and specific inhibitor of IMP dehydrogenase. Incubation of HL-60 cells with 500 U/ml GM-CSF for 4 d enhanced cell proliferation, which was accompanied by a significant increase in IMP dehydrogenase activity (from 2.22 in control cells to 3.70 nmol/mg/h in cells pretreated with GM-CSF). When HL-60 cells were incubated with 100 microM tiazofurin for 2 h, intracellular GTP decreased to 46% of untreated control cells. In HL-60 cells pretreated with GM-CSF, GTP pools decreased to 38% of control after incubation with tiazofurin which is 69% of the predicted value for additive effect. The MTT chemosensitivity assay yielded significantly decreased IC50 values for tiazofurin in HL-60 cells, preincubated with GM-CSF (IC50 decreased from 13 microM to 10 microM). Therefore our results suggest that combination therapy with GM-CSF and tiazofurin may be beneficial for the treatment of refractory leukaemia patients.

    Topics: Antineoplastic Agents; Cell Division; Dose-Response Relationship, Drug; Drug Synergism; Granulocyte-Macrophage Colony-Stimulating Factor; Guanosine Triphosphate; Humans; IMP Dehydrogenase; In Vitro Techniques; Leukemia, Promyelocytic, Acute; Ribavirin; Tumor Cells, Cultured

1993
Tiazofurin decreases Ras-GTP complex in K562 cells.
    Oncology research, 1993, Volume: 5, Issue:4-5

    The ras oncogene product (p21ras, Ras) is a GTP-binding protein and is thought to transduce signals regulating cellular proliferation and differentiation. The active form Ras-GTP is inactivated by hydrolyzing bound GTP to GDP. Tiazofurin, a specific inhibitor of IMP dehydrogenase, decreased cellular GTP pools and downregulated c-ras gene expression, leading to differentiation (Olah, E. et al., Proc. Natl. Acad. Sci. USA 85: 6533-6537, 1988; Weber et al., Cancer Commun. 3:61-66, 1991). To clarify the link between the action of tiazofurin on metabolic alterations and the induction of differentiation, we examined the effect of tiazofurin on the ratio of active Ras-GTP to total Ras in K562 cells in culture. Cells were labeled for 6 h with [32P]Pi in phosphate-free RPMI 1640. Tiazofurin (100 or 200 microM) was added to cells, and samples were taken at 0, 2, 4, 6 and 12 h of incubation. Cell lysates were immunoprecipitated with monoclonal anti-p21 antibody (Y13-259), then developed on thin layer chromatography. GTP and GDP bound to Ras were visualized by autoradiography. Tiazofurin treatment decreased Ras-GTP concentration in a time- and dose-dependent fashion. In the untreated K562 cells the Ras-GTP concentration was 26.3 +/- 1.4, and tiazofurin (200 microM) decreased it at 6 h to 16.6 +/- 2.9 and at 12 h to 10.6 +/- 2.1%. Inhibition of the GTP salvage pathway with hypoxanthine (100 or 200 microM) enhanced the tiazofurin-induced decrease of Ras-GTP, whereas addition of guanosine (100 microM) prevented the Ras-GTP decrease.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Antimetabolites, Antineoplastic; Cell Differentiation; Guanosine; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Hypoxanthine; Hypoxanthines; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Oncogene Protein p21(ras); Protein Binding; Ribavirin; Tumor Cells, Cultured

1993
Synergistic action of taxol and tiazofurin in human ovarian, pancreatic and lung carcinoma cells.
    Cancer biochemistry biophysics, 1993, Volume: 13, Issue:4

    Since taxol (NSC 125975) and tiazofurin (NSC 286193) attack at two different sites in microtubular synthetic processes, we tested the rationale that the two drugs might be synergistic in human ovarian (OVCAR-5), pancreatic (PANC-1) and lung carcinoma (H-125) cells and in rat hepatoma 3924A cells. In human OVCAR-5, PANC-1, H-125 and rat 3924A cells, for taxol the anti-proliferative IC50 was 0.05, 0.06, 0.03 and 0.04 microM, respectively; for tiazofurin IC50 = 8.3, 2.3, 1.8 and 6.9 microM. Thus, the concentrations for taxol required for IC50 for inhibiting cell proliferation were 166-, 38-, 60- and 173-fold lower than those for tiazofurin. Taxol and tiazofurin proved synergistic in all four cell lines tested. The synergism of taxol with tiazofurin should have implications in the clinical treatment of human solid tumors with particular relevance to ovarian, pancreatic, lung and hepatocellular carcinomas.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Carcinoma; Carcinoma, Adenosquamous; Cell Division; Drug Screening Assays, Antitumor; Drug Synergism; Female; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Liver Neoplasms, Experimental; Lung Neoplasms; Ovarian Neoplasms; Paclitaxel; Pancreatic Neoplasms; Rats; Ribavirin; Spindle Apparatus; Tumor Cells, Cultured

1993
Regulation of GTP biosynthesis.
    Advances in enzyme regulation, 1992, Volume: 32

    In the regulation of GTP biosynthesis, complex interactions are observed. A major factor is the behavior of the activity of IMPDH, the rate-limiting enzyme of de novo GTP biosynthesis, and the activity of GPRT, the salvage enzyme of guanylate production. The activities of GMP synthase, GMP kinase and nucleoside-diphosphate kinase are also relevant. In neoplastic transformation, the activities and amounts of all these biosynthetic enzymes are elevated as shown by kinetic assays and by immunotitration for IMPDH. In cancer cells, the up-regulation of guanylate biosynthesis is amplified by the concurrent decrease in activities of the catabolic enzymes, nucleotidase, nucleoside phosphorylase, and the rate-limiting purine catabolic enzyme, xanthine oxidase. The up-regulation of the capacity for GTP biosynthesis is also manifested in the stepped-up capacity of the overall pathways of de novo and salvage guanylate production. The linking with neoplasia is also seen in the elevation of the activities of IMPDH and GMP synthase and de novo and salvage pathways as the proliferative program is expressed as cancer cells enter log phase in tissue culture. The activity of GMP reductase showed no linkage with neoplastic or normal cell proliferation; however, in induced differentiation in HL-60 cells the activity increased concurrently with the decline in the activity of IMPDH. This reciprocal regulation of the two enzymes is observed in differentiation induced by retinoic acid, DMSO or TPA in HL-60 cells. In support of enzyme-pattern-targeted chemotherapy, evidence was provided for synergistic chemotherapy with tiazofurin (inhibitor of IMPDH) and hypoxanthine (competitive inhibitor of GPRT and guanine salvage activity) in patients and in tissue culture cell lines. These investigations should contribute to the clarification of the controlling factors of GMP biosynthesis, the role of the various enzymes, the behavior of GMP reductase in mammalian cells and the application of the approaches of enzyme-pattern-targeted chemotherapy in patients.

    Topics: Animals; Cell Differentiation; Cell Division; Colonic Neoplasms; Evaluation Studies as Topic; GMP Reductase; Guanosine Monophosphate; Guanosine Triphosphate; Humans; Hypoxanthine; Hypoxanthines; IMP Dehydrogenase; Inosine Monophosphate; Leukemia, Promyelocytic, Acute; Liver Neoplasms, Experimental; NADH, NADPH Oxidoreductases; Ribavirin; Tumor Cells, Cultured

1992
IMP dehydrogenase inhibitors reduce intracellular tetrahydrobiopterin levels through reduction of intracellular GTP levels. Indications of the regulation of GTP cyclohydrolase I activity by restriction of GTP availability in the cells.
    The Journal of biological chemistry, 1992, Oct-15, Volume: 267, Issue:29

    GTP cyclohydrolase I exhibits a positive homotropic cooperative binding to GTP, which raises the possibility of a role for GTP in regulating the enzyme reaction (Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660-21664). We examined whether or not the intracellular GTP level is within the range of affecting GTP cyclohydrolase I activity, using PC-12 rat pheochromocytoma and IMR-32 human neuroblastoma cells. Since GTP cyclohydrolase I was the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in these cell lines, the intracellular activities of this enzyme were reflected in the tetrahydrobiopterin contents. We found that the addition of guanine or guanosine increased GTP but not tetrahydrobiopterin in these cells. On the other hand, three IMP dehydrogenase inhibitors, tiazofurin, 2-amino-1,3,4-thiadiazole, and mycophenolic acid, decreased both GTP and tetrahydrobiopterin in a parallel and dose-dependent manner, and these effects were reversed by the simultaneous addition of guanine or guanosine. There was no evidence suggesting that these inhibitors inhibited other enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin. Comparing intracellular activities of GTP cyclohydrolase I in the inhibitor-treated cells with its substrate-velocity curve, we estimated that the intracellular concentration of free GTP is 150 microM at which point the activity of GTP cyclohydrolase I is elicited at its maximum velocity. Below this GTP concentration, GTP cyclohydrolase I activity is rapidly decreased. Therefore GTP can be a regulator for tetrahydrobiopterin biosynthesis.

    Topics: Animals; Antineoplastic Agents; Biopterins; GTP Cyclohydrolase; Guanine; Guanosine; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Kinetics; Mycophenolic Acid; Neuroblastoma; PC12 Cells; Ribavirin; Thiadiazoles; Tumor Cells, Cultured

1992
Cell cycle dependent regulation of IMP dehydrogenase activity and effect of tiazofurin.
    Life sciences, 1992, Volume: 51, Issue:16

    The activity of IMP dehydrogenase (IMP DH), the rate-limiting enzyme of de novo GTP biosynthesis, was shown to be increased in cancer cells. Tiazofurin, an inhibitor of IMP dehydrogenase, proved to be an effective agent in the treatment of refractory granulocytic leukemia. To examine the cell cycle dependent alterations of GTP synthesis and sensitivities to tiazofurin, we measured IMP DH activities and GTP pools, as well as the effects of tiazofurin on cell cycle phase enriched HL-60 cells. We now show that IMP DH activities and GTP concentrations are increased in S-phase enriched fractions of HL-60 cells. Moreover, the depletion of GTP concentrations by tiazofurin is most effective in S-phase enriched HL-60 cells. These results may be utilized in cancer chemotherapy to combine tiazofurin with biologic response modifiers which recruit quiescent leukemic cells into the cell cycle.

    Topics: Antimetabolites, Antineoplastic; Cell Cycle; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Promyelocytic, Acute; Ribavirin; Tumor Cells, Cultured

1992
Antitumor activity of tiazofurin in human colon carcinoma HT-29.
    Cancer investigation, 1992, Volume: 10, Issue:6

    Tiazofurin is effective in treating end-stage leukemic patients (Tricot et al., Cancer Res 49:3696-3701, 1989). In sensitive tumors, the active metabolite of tiazofurin, TAD, potently inhibits IMP dehydrogenase activity, resulting in reduced guanylate pools. To elucidate tiazofurin activity in human solid tumors, we examined its activity in human colon carcinoma HT-29. Tiazofurin exhibited an LC50 of 35 microM in cultured HT-29 cells. Incubation of HT-29 cells with 100 microM tiazofurin for 2 h resulted in TAD formation (9.3 nmol/g cells) and in a 64% decrease in GTP pools. For biochemical and chemotherapy studies, athymic nude mice were transplanted s.c. with HT-29 cells. Twenty-four days later, mice were injected i.p. with tiazofurin (500 mg/kg); 6 h later, tumors were removed and analyzed. These tumors formed 17 nmol/g of TAD with decreased GTP pools (56%). To study oncolytic activity, transplanted mice were treated 24 h later with tiazofurin (500 mg/kg, once a day for 10 days). To examine the effectiveness of tiazofurin in established tumors, the drug was administered to mice 14 days after tumor implantation (500 mg/kg, once a day for 5 days, course repeated 4 times with a 10-day rest). Both treatment schedules resulted in significant antitumor activity. This study illustrates the potential usefulness of tiazofurin in treating human colon carcinoma.

    Topics: Adenine Nucleotides; Animals; Antineoplastic Agents; Colonic Neoplasms; Drug Screening Assays, Antitumor; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Male; Mice; Mice, Nude; Ribavirin; Tumor Cells, Cultured

1992
Inhibition by tiazofurin of inosine 5'-phosphate dehydrogenase (IMP DH) activity in extracts of ovarian carcinomas.
    Gynecologic oncology, 1992, Volume: 47, Issue:1

    Cancer cells have an increased ability to synthesize GTP (guanosine triphosphate) because of increased activity of IMP DH (inosine 5'-phosphate dehydrogenase, EC 1.1.1.205). Because IMP DH activity is rate limiting for de novo biosynthesis of GTP, this enzyme was suggested as a sensitive target for chemotherapy. Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) is converted in the cells into the active metabolite, TAD, (thiazole-4-carboxamide adenine dinucleotide) which potently inhibits IMP DH activity. By adding TAD to tissue extracts one can determine the extent of inhibition of IMP DH. We applied the IMP DH assay method to extracts of normal ovaries (N = 11) and epithelial ovarian carcinomas (N = 10). The IMP DH activity (mean +/- SE) in ovarian carcinoma was 21.1 +/- 5.8 which was markedly higher than that observed in normal ovaries (2.9 +/- 0.7 nmol/hr/mg protein) (P < 0.05%). The inhibition by TAD of IMP DH activity in ovarian carcinomas (N = 4) was 81%. The results indicate that IMP DH activity is elevated sevenfold in ovarian carcinomas as compared to normal ovary and can be inhibited by exposure to tiazofurin (TAD). Similar high IMP DH activity and inhibition of the activity by TAD was observed in patients with chronic granulocytic leukemia in blast crisis among whom 70 to 80% remissions were reported. Since there is increased IMP DH activity in human ovarian carcinomas and in OVCAR-5 cells and tiazofurin and TAD inhibit IMP DH activity of these cells and the proliferation of human ovarian carcinoma xenografts in the mouse, tiazofurin may merit serious consideration for a Phase II trial for patients with recurrent/refractory epithelial ovarian carcinoma.

    Topics: Adenocarcinoma; Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Female; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Middle Aged; Ovarian Neoplasms; Ovary; Ribavirin; Tissue Extracts

1992
IMP dehydrogenase and GTP as targets in human leukemia treatment.
    Advances in experimental medicine and biology, 1991, Volume: 309B

    Topics: Adult; Aged; Allopurinol; Antineoplastic Agents; Female; Genes, myc; Genes, ras; Guanosine Triphosphate; Humans; IMP Dehydrogenase; In Vitro Techniques; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Male; Middle Aged; Ribavirin; Tumor Cells, Cultured

1991
Determination of thiazole-4-carboxamide adenine dinucleotide (TAD) levels in mononuclear cells of leukemic patients treated with tiazofurin.
    Biochemical pharmacology, 1991, Jan-15, Volume: 41, Issue:2

    Tiazofurin is an oncolytic agent which has shown therapeutic activity in end-stage acute nonlymphocytic leukemia (ANLL) and blast crisis of chronic granulocytic leukemia (CGL-BC). Tiazofurin is anabolized to the active metabolite, thiazole-4-carboxamide adenine dinucleotide (TAD), which inhibits IMP dehydrogenase activity, leading to reduction of guanylate pools and cessation of cancer cell proliferation. The concentration of TAD in neoplastic cells of patients treated with tiazofurin should be a good indicator of sensitivity to the drug and also might herald the emergence of drug-resistant cells. Therefore, the precise quantitation of TAD in cancer cells during tiazofurin treatment is essential. In this paper we report a highly sensitive method for the determination of TAD in biological samples. With this technique, in addition to TAD, thirteen other biologically relevant adenine, guanine, cytosine and uridine nucleotides can be separated and quantitated accurately. TAD standard was separated on a Waters Partisil 10-SAX column in a RCM-10 module using an ammonium phosphate buffer system. TAD eluted at 21 min with a limit of detection of 15 pmol and linearity up to 3 nmol. The coefficient of variation was 0.6 +/- 0.1% for retention time and 2 +/- 0.3% for TAD concentration. Recovery of TAD was 96% with reproducibility of 98%. To examine the applicability of this method to a clinical setting, blood samples were obtained from a patient with CGL-BC and leukocytes were separated on a Ficoll-Hypaq gradient, extracted with trichloroacetic acid, and an aliquot was analyzed on HPLC. The TAD peak was identified by comparing the retention time and spectral analysis of the standard. After the patient was treated with a 2200 mg/m2 (12.7 mM) dose of tiazofurin, the TAD concentrations in the mononuclear cells at 2, 6, and 24 hr were 23.1, 13.6, and 0.8 microM. TAD levels at 2, 6, and 24 hr after a tiazofurin dose of 3300 mg/m2 (21.1 mM) were 42.8, 26.1, and 1.4 microM respectively.

    Topics: Adenine Nucleotides; Antineoplastic Agents; Chromatography, High Pressure Liquid; Guanosine Triphosphate; Humans; Leukemia; Monocytes; Reproducibility of Results; Ribavirin; Sensitivity and Specificity

1991
Down-regulation of c-myc and c-Ha-ras gene expression by tiazofurin in rat hepatoma cells.
    Cancer biochemistry biophysics, 1990, Volume: 11, Issue:2

    There was an overexpression of the c-myc gene (11-fold) and of the c-Ha-ras gene (2-fold) in rat hepatoma 3924A cells compared to normal rat liver as measured by dot-blot analysis of total cytoplasmic RNA. The overexpression of c-myc was attributed to a 10- to 14-fold amplification and rearrangement of the c-myc sequences as determined by Southern blot analysis. The expression of the c-myc also was dependent upon the proliferative state of the hepatoma cells. Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide; NSC 286193), an inhibitor of the activity of IMP dehydrogenase (EC 1.1.1.205), the rate-limiting enzyme of GTP biosynthesis, resulted in a rapid drop (less than 1 h) to 50% of control in the target enzyme activity in the hepatoma cells and in a subsequent marked decrease to 55% in GTP concentration. These events were followed at 12 h of tiazofurin treatment by a 3-fold reduction in the expression of the c-myc gene and a 9-fold decline in that of the c-Ha-ras gene. These results in the hepatoma cells provide evidence in support of the earlier demonstrated correlation in K562 cells between GTP concentration and expression of c-myc and c-ras genes (Olah et al., 1989). These genes might depend on GTP for their expression in hepatoma cells and they might cooperate in a signal pathway that controls cell proliferation.

    Topics: Animals; Cell Division; Down-Regulation; Gene Amplification; Gene Expression; Gene Rearrangement; Genes, ras; Guanosine Triphosphate; IMP Dehydrogenase; Liver Neoplasms, Experimental; Oncogenes; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins p21(ras); Rats; Ribavirin; Ribonucleosides

1990
Tiazofurin and selenazofurin induce depression of cGMP and phosphatidylinositol pathway in L1210 leukemia cells.
    Biochemical and biophysical research communications, 1989, Oct-31, Volume: 164, Issue:2

    The synthetic nucleoside tiazofurin(2-beta-ribofuranosylthiazole-4-carboxyamide) and its selenium analog selenazofurin inhibited the growth of L1210 leukemia cell culture in a dose dependent manner with IC50 value of 2.0 and 0.2 Um respectively. The GTP/ATP ratio was diminished 4-6 fold as measured by HPLC, while IMP/ATP increased 6-8 fold. The decreased guanylate pools may explain the 30% reduction in cyclic GMP levels and GTPase activity measured after the treatment with the nucleosides. Inhibition of phospholipase C activity is suggested since diacylglycerol content, protein kinase C activity and phorbol ester binding of the membrane fraction were also reduced 20-40%. These results reveal a novel aspect in the action of these compounds which may play a role in their therapeutic action and selectivity.

    Topics: Adenosine Triphosphate; Animals; Antineoplastic Agents; Caenorhabditis elegans Proteins; Carrier Proteins; Cyclic GMP; Diglycerides; Guanosine Triphosphate; Inosine Monophosphate; Leukemia L1210; Mice; Organoselenium Compounds; Phorbol 12,13-Dibutyrate; Phosphates; Phosphatidylinositols; Protein Kinase C; Receptors, Drug; Ribavirin; Ribonucleosides; Selenium

1989
Biochemically directed therapy of leukemia with tiazofurin, a selective blocker of inosine 5'-phosphate dehydrogenase activity.
    Cancer research, 1989, Jul-01, Volume: 49, Issue:13

    Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide, NSC 286193), a selective inhibitor of the activity of IMP dehydrogenase (EC 1.1.1.205), the rate-limiting enzyme of de novo GTP biosynthesis, provided in end stage leukemic patients a rapid decrease of IMP dehydrogenase activity and GTP concentration in the blast cells and a subsequent decline in blast cell count. Sixteen consecutive patients with end stage acute nonlymphocytic leukemia or myeloid blast crisis of chronic granulocytic leukemia were treated with tiazofurin. Allopurinol was also given to inhibit xanthine oxidase activity to decrease uric acid excretion and to elevate the serum concentration of hypoxanthine, which should competitively inhibit the activity of hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8), the salvage enzyme of guanylate synthesis. Assays of IMP dehydrogenase activity and GTP concentration in leukemic cells provided a method to monitor the impact of tiazofurin and allopurinol and to adjust the drug doses. In this group of patients with poor prognosis, five attained a complete hematological remission and one showed a hematological improvement. A marked antileukemic effect was seen in two other patients. All five evaluable patients with myeloid blast crisis of chronic granulocytic leukemia reentered the chronic phase of their disease. Five patients with acute nonlymphocytic leukemia were refractory to tiazofurin and three were unevaluable for hematological effect because of early severe complications. Responses with intermittent 5- to 15-day courses of tiazofurin lasted 3-10 months. Tiazofurin had a clear antiproliferative effect, but the pattern of hematological response indicated that it appeared to induce differentiation of leukemic cells. In spite of toxicity with severe or life-threatening complications in 11 of 16 patients, tiazofurin was better tolerated in most patients than other antileukemic treatment modalities and provided a rational, biochemically targeted, and biochemically monitored chemotherapy which should be of interest in the treatment of leukemias and as a paradigm in enzyme pattern-targeted chemotherapy.

    Topics: Antimetabolites, Antineoplastic; Blast Crisis; Blood Cell Count; Bone Marrow; Enzyme Inhibitors; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Ketone Oxidoreductases; Leukemia, Myeloid; Leukemia, Myeloid, Acute; Ribavirin; Ribonucleosides

1989
Growth inhibition and induction of phenotypic alterations by tiazofurin: differential effects on MCF-7 breast cancer and HBL-100 breast cell lines.
    European journal of cancer & clinical oncology, 1989, Volume: 25, Issue:5

    The effect of the nucleoside anti-metabolite tiazofurin (TR) was examined on the growth and phenotypic alterations of MCF-7 breast cancer and HBL-100 normal breast cell lines. TR was shown to inhibit MCF-7 cell growth. This inhibition could be reversed by exogenous addition of guanosine. The anti-proliferative effect of TR is accompanied by phenotypic alterations that include lipid accumulation and an increase in alkaline phosphatase activity. In contrast to MCF-7 cells, the HBL-100 breast milk derived cell line is relatively resistant to inhibition by TR. Alkaline phosphatase is not affected by TR and untreated cells accumulate lipid droplets, similar to TR-treated MCF-7 cells. Determination of GTP and ATP pools in both cell lines revealed that TR markedly reduces GTP content in MCF-7 cells. In HBL-100 cells, TR induces only a small decrease in GTP and does not affect ATP levels. The prototypic IMP dehydrogenase inhibitor, mycophenolic acid (MA), markedly inhibits HBL-100 cell growth, similarly to its effect on MCF-7 breast cancer cells. These findings may suggest differential metabolism of TR in MCF-7 and HBL-100 cells.

    Topics: Adenosine Triphosphate; Antimetabolites, Antineoplastic; Breast Neoplasms; Cell Division; Cell Line; Female; Guanosine Triphosphate; Humans; Milk, Human; Mycophenolic Acid; Ribavirin; Ribonucleosides; Tumor Cells, Cultured

1989
Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.
    Proceedings of the National Academy of Sciences of the United States of America, 1988, Volume: 85, Issue:17

    Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism.

    Topics: Antimetabolites, Antineoplastic; Cell Differentiation; Cell Line; Genes, ras; Guanosine Triphosphate; Hemoglobins; Humans; IMP Dehydrogenase; Kinetics; Leukemia, Myeloid; Ribavirin; Ribonucleosides; Transcription, Genetic

1988
Enzyme-pattern-targeted chemotherapy with tiazofurin and allopurinol in human leukemia.
    Advances in enzyme regulation, 1988, Volume: 27

    The hypothesis was tested that the increased IMP dehydrogenase activity in human myelocytic leukemic cells, and along with it guanylate biosynthesis, might be a sensitive target to chemotherapy by tiazofurin. 1. IMP dehydrogenase activity in normal leukocytes was 3.1 +/- 0.5 (means +/- S.E.) nmol/hr/mg protein and in leukemic cells it was elevated 15- to 41-fold. The activity of guanine phosphoribosyltransferase in normal leukocytes was 389 +/- 27 nmol/hr/mg protein and in the leukemic cells it increased 2.8- to 6.8-fold. 2. IMP dehydrogenase was purified 4,900-fold to homogeneity from rat hepatoma 3924A with a yield of 30%. The kinetic properties of the hepatoma enzyme were similar to those of the enzyme in human myelocytic leukemic blast cells because of the similarity of the Km's for IMP (23 microM), NAD (44 and 65 microM); the Ki for TAD was 0.1 microM in both enzymes. 3. There was a selectivity of the in vitro response to tiazofurin in human normal and leukemic leukocytes. When labeled tiazofurin was incubated with leukocytes from normal, healthy volunteers and from leukemic patients, the leukemic leukocytes made 20- to 30-fold more TAD and the GTP content decreased as compared to normal leukocytes. This procedure proved to be a suitable predictive test in a clinical setting because patients with positive tests responded to tiazofurin whereas those with negative ones did not. 4. The National Cancer Institute approved a chemotherapeutic phase I/II trial which concentrates on treatment of refractory acute myelocytic leukemia. Tiazofurin is infused in a 60-minute period with a pump to insure uniform delivery. A novel aspect of the trial was that it was directed primarily by the biochemical impact of tiazofurin on IMP dehydrogenase activity and GTP concentration and the tiazofurin doses were to be adjusted accordingly. Patients received allopurinol as a routine precaution against possible accumulation of uric acid in the kidney. 5. In the first eight patients, there was one complete remission, two entered the chronic phase, two entered into partial remission, one did not respond, and two were not evaluable. In the five patients who responded, there was a rapid, profound decrease in IMP dehydrogenase activity of the blast cells and a gradual decline in GTP concentrations. The blast cell count followed the decrease in the GTP concentration. The white blood cell count was largely preserved. 6. Bone marrow aspirates and peripheral blood samples showed that w

    Topics: Adenine; Aged; Allopurinol; Animals; Drug Evaluation; Female; Guanine; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Ketone Oxidoreductases; Leukemia; Leukemia, Myeloid, Acute; Liver Neoplasms, Experimental; Male; Middle Aged; Rats; Ribavirin; Ribonucleosides; Tumor Cells, Cultured

1988
Modulation of acetyl-CoA carboxylase by inhibitors of IMP dehydrogenase: implications for insulin regulation.
    Archives of biochemistry and biophysics, 1987, Volume: 252, Issue:1

    The activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis, can be regulated by both adenine and guanine nucleotides in vitro. We have employed two inhibitors of IMP dehydrogenase, ribavarin and tiazofurin, to investigate a possible role for intracellular nucleotides in ACC regulation in rat adipocytes. Ribavarin, but not tiazofurin, leads to a profound time-dependent inhibition of ACC activity that is associated with a decrease in both intracellular ATP and GTP. This inactivating effect is largely reversed with guanosine, accompanied by increases in both ATP and GTP levels. Epinephrine-mediated inactivation of ACC in intact cells is not altered by ribavarin incubation. However, in these experiments, insulin-mediated activation is observed only after ribavarin-induced inhibition of the enzyme. These data suggest that nucleotides may modulate ACC activity and influence is regulation by insulin in intact cells. The possible mechanisms underlying the insulin activation of ACC and the role of intracellular nucleotides in insulin action are discussed.

    Topics: Acetyl-CoA Carboxylase; Adenosine Triphosphate; Adipose Tissue; Animals; Enzyme Activation; Epinephrine; Guanosine Triphosphate; IMP Dehydrogenase; Insulin; Ketone Oxidoreductases; Kinetics; Ligases; Male; Rats; Ribavirin

1987
Hematological and biochemical action of tiazofurin (NSC 286193) in a case of refractory acute myeloid leukemia.
    Cancer research, 1987, Sep-15, Volume: 47, Issue:18

    A patient with refractory acute myeloid leukemia was treated with tiazofurin, an agent that causes inhibition of tumor cell proliferation by depressing GTP concentrations in the malignant cells. The initial dose of 1100 mg/m2 was ineffective clinically and biochemically. Dose escalations to 1650, 2200, and finally 3300 mg/m2 resulted in a marked decrease in the absolute number of blasts without causing bone marrow hypoplasia or marked neutropenia. The decrease in the peripheral blast cell count was observed subsequent to a decline in GTP concentrations in the leukemic cells to less than 30% of the pretreatment value. Consecutive bone marrow examinations showed a remarkable shift from myeloblasts to more mature myeloid elements, suggesting an in vivo differentiative action of tiazofurin. Although a total dose of 23,650 mg/m2 was administered over a 13-day period, only very mild side effects were noted. The absence of complications reported by others in Phase I trials with tiazofurin may be related to our slow administration of the drug by pump over a 1-h period in this trial. Tiazofurin appears to be a promising agent in the treatment of leukemia because of its selective action on leukemic cells and the availability of a rapid in vitro method capable of predicting sensitivity of leukemic cells to the agent and monitoring its activity during treatment by measuring thiazole-4-carboxamide adenine dinucleotide and GTP concentrations. These observations are being tested in a larger group of leukemic patients.

    Topics: Antineoplastic Agents; Bone Marrow; Guanosine Triphosphate; Humans; Leukemia, Myeloid, Acute; Male; Middle Aged; Ribavirin; Ribonucleosides

1987
Use of tiazofurin to enhance the metabolism and cytotoxic activities of analogues of guanine, guanosine, and deoxyguanosine.
    Cancer research, 1987, Feb-15, Volume: 47, Issue:4

    An effective modulator of cellular guanine nucleotide pools, 2-beta-D-ribofuranosylthiazole-4-carboxamide (tiazofurin) was tested for its ability to affect utilization of certain guanine, guanosine, and deoxyguanosine analogues by Chinese hamster ovary cells and hypoxanthine guanine phosphoribosyltransferase (HGPRTase)-deficient variants. The nucleoside analogues investigated were chosen for their potential to be metabolized to the nucleotide level by pathways other than those requiring the action of HGPRTase. Exposure of tiazofurin-treated (500 microM for 3 h) cells to 3-deazaguanosine (200 microM for 3 h) resulted in enhanced 3-deazaGTP formation and an increase (5-10-fold) in the ratio 3-deazaGTP/GTP. Tiazofurin treatment also stimulated [3H]deoxyguanosine utilization (8-fold) by HGPRTase-deficient cells, and accordingly, greatly increased the cytotoxicity of 2'-deoxy-3-deazaguanosine and arabinosylguanine. This study emphasizes the potential usefulness of tiazofurin in sequential combination with appropriate analogues of guanosine and deoxyguanosine in a clinical setting and as a tool in studying the metabolism of these agents.

    Topics: Animals; Cell Line; Chromatography, High Pressure Liquid; Cricetinae; Cricetulus; Deoxyguanosine; Female; Guanine; Guanosine; Guanosine Triphosphate; Hypoxanthine Phosphoribosyltransferase; Ovary; Ribavirin; Ribonucleosides

1987
Alterations in glycoprotein synthesis and guanosine triphosphate levels associated with the differentiation of HL-60 leukemia cells produced by inhibitors of inosine 5'-phosphate dehydrogenase.
    Cancer research, 1986, Volume: 46, Issue:5

    The synthetic "C" nucleoside, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide), its selenium analogue selenazofurin, and the related inhibitor of inosine 5'-phosphate (IMP) dehydrogenase, mycophenolic acid, are effective inducers of the terminal differentiation of HL-60 promyelocytic leukemia cells. The inhibition of cellular replication and the induced maturation produced by these agents appears to be a consequence of the inhibition of IMP dehydrogenase, since growth inhibition is partially reversed and differentiation is completely prevented by the simultaneous exposure of cells treated with inhibitors of IMP dehydrogenase to exogenous guanosine, which serves to circumvent the effects of the blockage of IMP dehydrogenase. The exposure of HL-60 leukemia cells to inhibitors of IMP dehydrogenase caused a marked reduction in the incorporation of [3H]mannose into both cellular glycoproteins and their lipid-linked oligosaccharide precursors; these effects are presumably due to the pronounced decrease in intracellular levels of guanosine triphosphate produced by blockage of IMP dehydrogenase. Maximum effects on glycoprotein biosynthesis occurred within 8 h of exposure to the inhibitors of IMP dehydrogenase. The simultaneous incubation of cells with guanosine and these inducers of differentiation partially prevented the reduction in [3H]mannose incorporation into glycoproteins, supporting a relationship between glycoprotein biosynthesis and guanosine triphosphate formation in the induction of differentiation by inhibitors of IMP dehydrogenase.

    Topics: Cell Cycle; Cell Differentiation; Cell Line; Dolichol Monophosphate Mannose; Glycoproteins; Guanosine; Guanosine Triphosphate; Hematopoiesis; Humans; IMP Dehydrogenase; Ketone Oxidoreductases; Leukemia, Myeloid, Acute; Mycophenolic Acid; Organoselenium Compounds; Phagocytosis; Ribavirin; Ribonucleosides; Selenium

1986
Selective sensitivity to tiazofurin of human leukemic cells.
    Biochemical pharmacology, 1986, Jun-15, Volume: 35, Issue:12

    This study reports the selective sensitivity to tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide, NSC-286193) of human leukemic leukocytes as compared to normal ones in bone marrow and peripheral blood samples by comparing the production of the active metabolite, thiazole-4-carboxamide adenine dinucleotide (TAD), from labeled tiazofurin and the depression of GTP concentration. When labeled tiazofurin was incubated with leukocytes obtained from healthy volunteers or from leukemic patients (acute non-lymphocytic leukemia or acute lymphoblastic leukemia), the TAD production was 27.0 +/- 8.3, 551.3 +/- 71.8 and 755.9 +/- 94.1 pmoles/10(9) cells per hr, respectively. Thus, the leukemic cells produced over 20-fold higher concentrations of TAD than the normal leukocytes. Incubation with tiazofurin in leukemic leukocytes decreased the GTP pools (to 48-79%), whereas there was no change in the normal leukocytes. These results indicate a selectivity of response to tiazofurin in human normal and leukemic leukocytes. The procedure reported in this work may be suitable as a rapid predictive test for the sensitivity of leukemic leukocytes to tiazofurin. Such a diagnostic test should be helpful in identifying neoplastic cells sensitive to tiazofurin in the Phase II trials now being developed.

    Topics: Adenine Nucleotides; Adult; Aged; Antineoplastic Agents; Female; Guanosine Triphosphate; Humans; Leukemia; Leukocytes; Male; Middle Aged; Ribavirin; Ribonucleosides

1986
Effects of the inhibitors of IMP dehydrogenase, tiazofurin and mycophenolic acid, on glycoprotein metabolism.
    Molecular pharmacology, 1985, Volume: 28, Issue:6

    The effects of the inhibitors of IMP dehydrogenase, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and mycophenolic acid, on the synthesis of cellular glycoproteins were evaluated in Sarcoma 180 cells. Both tiazofurin and mycophenolic acid decreased the rate of incorporation of [2-3H]mannose and [2-3H]fucose into acid-precipitable glycoproteins within 4 hr of exposure; this inhibitory activity was concentration dependent and occurred in the absence of a significant effect on the incorporation of labeled glucosamine and leucine into acid-insoluble material. Interference with the utilization of [3H]mannose for the formation of glycoproteins was paralleled by an inhibition of [3H] mannose incorporation into their lipid-linked oligosaccharide precursors following treatment with cytotoxic concentrations of tiazofurin (100 microM) or mycophenolic acid (10 microM); these actions occurred within 3 hr of exposure to these agents, with maximal reductions being observed at 12 hr. Under these conditions, intracellular GTP levels were reduced by 80%, whereas ATP pools remained unaffected ant UTP levels were markedly increased. Guanosine (100 microM) prevented the cytotoxic actions of tiazofurin and mycophenolic acid and reversed the drug-induced decrease in GTP pools and in the incorporation of mannose and other metabolic precursors into acid-insoluble material. Inhibition of fucose and mannose incorporation into lipid-linked oligosaccharides and glycoproteins were preceded by decreases in the labeling of their respective guanosine nucleotide sugars and were followed sequentially by alterations in the plasma membrane as detected by both the binding and the rate of cell agglutination caused by the plant lectin, concanavalin A. The findings that tiazofurin and mycophenolic acid produce alterations in the utilization of [3H]mannose for the formation of glycoproteins and in membrane architecture are indicative of metabolic lesions induced by agents that selectively depress guanine nucleotide synthesis through inhibition of IMP dehydrogenase.

    Topics: Animals; Cell Division; Cells, Cultured; Dose-Response Relationship, Drug; Glucosamine; Glycoproteins; Guanosine; Guanosine Triphosphate; IMP Dehydrogenase; Ketone Oxidoreductases; Kinetics; Mannose; Mycophenolic Acid; Ribavirin; Ribonucleosides; Sarcoma 180; Tritium

1985
Modulation of IMP dehydrogenase activity and guanylate metabolism by tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide).
    The Journal of biological chemistry, 1984, Apr-25, Volume: 259, Issue:8

    Tiazofurin, a C-nucleoside, was cytotoxic in hepatoma 3924A cells grown in culture with an LC50 = 7.5 microM. In the culture, a closely linked dose-related response of tumor cell-kill and depletion of GTP pools was observed after tiazofurin treatment. In rats carrying subcutaneously transplanted hepatoma 3924A solid tumors, a single intraperitoneal injection of tiazofurin (200 mg/kg) caused a rapid inhibition of IMP dehydrogenase (EC 1.2.1.14) activity and depleted GDP, GTP, and dGTP pools in the tumor; concurrently, the 5-phosphoribosyl 1-pyrophosphate (PRPP) and IMP pools expanded 8- and 15-fold, respectively. Tiazofurin decreased tumoral IMP dehydrogenase activity and dGTP pools in a dose-dependent manner over a range of 50-200 mg/kg; by contrast, the depletion of GTP and the accumulation of IMP and PRPP pools were near maximum at 50 mg/kg. The increase in PRPP pools may be attributed to an inhibition by IMP of the activity of hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8). The IMP dehydrogenase activity and the pools of ribonucleotides returned to the normal range by 24-48 h after the single injection of tiazofurin. However, the markedly depleted dGTP pools remained low for 72 h. Tiazofurin treatment resulted in significant anti-tumor activity in rats inoculated with hepatoma 3924A. The decrease in GTP levels and particularly the sustained depletion in the dGTP pools may explain, in part at least, the chemo-therapeutic action of tiazofurin on hepatoma 3924A. This is the first report showing that a marked therapeutic response was achieved against rapidly growing hepatoma 3924A by treatment with a single anti-metabolite.

    Topics: Animals; Antineoplastic Agents; Cell Line; Deoxyribonucleotides; Guanine Nucleotides; Guanosine Triphosphate; IMP Dehydrogenase; Inosine Monophosphate; Ketone Oxidoreductases; Kinetics; Liver Neoplasms, Experimental; Male; Rats; Rats, Inbred ACI; Ribavirin; Ribonucleosides

1984
Studies on the mechanism of action of tiazofurin metabolism to an analog of NAD with potent IMP dehydrogenase-inhibitory activity.
    Advances in enzyme regulation, 1983, Volume: 21

    Following the parenteral administration of tiazofurin, 2-beta D-ribofuranosylthiazole-4-carboxamide (thiazole nucleoside, TR), a potent but reversible inhibitor of IMP dehydrogenase is generated in subcutaneous nodules of the P388 leukemia. The compound responsible for this effect has been isolated from homogenates of the tumor by ion-exchange HPLC, and its presence monitored by enzyme-inhibition assay. The inhibitor has also been prepared by incubation of tiazofurin with P388 cells in culture. Chromatographically, the inhibitory principle exhibits a moderately strong set negative charge at pH 3, and elutes in the general vicinity of the nucleoside-5'-diphosphates; its absorption maximum in aqueous solution (pH 7) lies at 252 nm. Exposure of the molecule to snake-venom phosphodiesterase or to nucleotide pyrophosphatase destroys its inhibitory potency, whereas other phosphodiesterases are either less effective or inert. Since these results suggested that the anabolite might be a dinucleotide with a phosphodiester linkage of the kind found in NAD, attempts were made to synthesize such an analogue from the 5'-monophosphate of thiazole nucleoside and ATP-Mg2+, using a purified preparation of NAD pyrophosphorylase; modest yields were obtained of a compound with chromatographic, spectral and enzyme-inhibitory properties identical to those of the material isolated from P388 tumor nodules. This enzyme-synthesized material was radioactive when [3H]ATP was used as cosubstrate, and yielded both AMP and thiazole nucleoside-5'-monophosphate on treatment with phosphodiesterase. It resisted attack by NAD glycohydrolase. An apparently identical dinucleotide was also synthesized chemically by means of the Khorana condensation. Mass spectral analysis and nuclear magnetic resonance studies with homogeneous preparations of both the enzymically and chemically synthesized compound were compatible with its being a dinucleotide in which the nicotinamide of NAD has been replaced by thiazole-4-carboxamide. Versus IMP dehydrogenase, the dinucleotide exhibited a K1 of approximately 2 X 10(-7) M and was non-competitive with NAD as the variable substrate. Other NAD utilizing enzymes, including representative dehydrogenases and poly ADP ribose polymerase, were, by comparison to mammalian IMPD, resistant to inhibition by TAD. The properties of this novel dinucleotide are compared and contrasted with those of analogs of NAD containing modifications in the pyridine, adenine or ribofuranos

    Topics: Animals; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Guanosine Triphosphate; IMP Dehydrogenase; Ketone Oxidoreductases; Magnetic Resonance Spectroscopy; Mass Spectrometry; Mice; NAD; Ribavirin; Ribonucleosides; Spectrophotometry

1983
Mechanism of resistance to the oncolytic C-nucleoside 2-beta-D-ribofuranosylthiazole-4-carboxamide (NSC-286193).
    Biochemical pharmacology, 1982, Aug-01, Volume: 31, Issue:15

    Topics: Animals; Antineoplastic Agents; Drug Resistance; Guanosine Triphosphate; Leukemia P388; Leukemia, Experimental; Mice; Neoplasm Transplantation; Ribavirin; Ribonucleosides; Time Factors

1982