guanosine-triphosphate and pyridoxal-phosphate-6-azophenyl-2--4--disulfonic-acid

guanosine-triphosphate has been researched along with pyridoxal-phosphate-6-azophenyl-2--4--disulfonic-acid* in 6 studies

Other Studies

6 other study(ies) available for guanosine-triphosphate and pyridoxal-phosphate-6-azophenyl-2--4--disulfonic-acid

ArticleYear
Secretion of ATP from Schwann cells in response to uridine triphosphate.
    The European journal of neuroscience, 2005, Volume: 21, Issue:1

    The mechanisms by which uridine triphosphate (UTP) stimulates ATP release from Schwann cells cultured from the sciatic nerve were investigated using online bioluminescence techniques. UTP, a P2Y(2) and P2Y(4) receptor agonist, stimulated ATP release from Schwann cells in a dose-dependent manner with an ED(50) of 0.24 microm. UTP-stimulated ATP release occurs through P2Y(2) receptors as it was blocked by suramin which inhibits P2Y(2) but not P2Y(4) receptors. Furthermore, positive immunostaining of P2Y(2) receptors on Schwann cells was revealed and GTP, an equipotent agonist with UTP at rat P2Y(4) receptors, did not significantly stimulate ATP release. UTP-stimulated ATP release involved second messenger pathways as it was attenuated by the phospholipase C inhibitor U73122, the protein kinase C inhibitor chelerytherine chloride, the IP(3) formation inhibitor lithium chloride, the cell membrane-permeable Ca(2+) chelator BAPTA-AM and the endoplasmic reticulum Ca(2+)-dependent ATPase inhibitor thapsigargin. Evidence that ATP may be stored in vesicles that must be transported to the cell membrane for exocytosis was found as release was significantly reduced by the Golgi-complex inhibitor brefeldin A, microtubule disruption with nocodazole, F-actin disruption with cytochalasin D and the specific exocytosis inhibitor botulinum toxin A. ATP release from Schwann cells also involves anion transport as it was significantly reduced by cystic fibrosis transmembrane conductance regulator inhibitor glibencamide and anion transporter inhibitor furosemide. We suggest that UTP-stimulated ATP release is mediated by activation of P2Y(2) receptors that initiate an IP(3)-Ca(2+) cascade and protein kinase C which promote exocytosis of ATP from vesicles as well as anion transport of ATP across the cell membrane.

    Topics: Adenosine Triphosphate; Alkaloids; Animals; Animals, Newborn; Benzophenanthridines; Botulinum Toxins; Botulinum Toxins, Type A; Brefeldin A; Calcium; Cyclic AMP-Dependent Protein Kinases; Cytochalasin D; Diagnostic Imaging; Dose-Response Relationship, Drug; Drug Interactions; Estrenes; Furosemide; Glyburide; Glycyrrhetinic Acid; Guanosine Triphosphate; Immunohistochemistry; Isoquinolines; Microscopy, Confocal; Nucleic Acid Synthesis Inhibitors; Phenanthridines; Phorbol 12,13-Dibutyrate; Protein Kinase C; Protein Synthesis Inhibitors; Purinergic P2 Receptor Agonists; Purinergic P2 Receptor Antagonists; Pyridoxal Phosphate; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2; Receptors, Purinergic P2Y2; Schwann Cells; Sciatic Nerve; Sulfonamides; Suramin; Thapsigargin; Time Factors; Type C Phospholipases; Uridine Triphosphate

2005
Cooperation in signal transduction of extracellular guanosine 5' triphosphate and nerve growth factor in neuronal differentiation of PC12 cells.
    Neuroscience, 2004, Volume: 128, Issue:4

    Guanosine 5' triphosphate (GTP), acting synergistically with the nerve growth factor (NGF), enhances the proportion of neurite-bearing cells in cultures of PC12 rat pheochromocytoma cells. We studied the transduction mechanisms activated by GTP in PC12 cells and found that addition of GTP (100 microM) increased intracellular calcium concentration ([Ca(2+)](i)) in cells that were between 60 and 70% confluent. Addition of GTP also enhanced activation of NGF-induced extracellular regulated kinases (ERKs) and induced Ca(2+) mobilization. This mobilization, due to the activation of voltage-sensitive and ryanodine-sensitive calcium channels, as well as pertussis toxin-sensitive purinoceptors, modulates Ca(2+)-activated K(+) channels not involved in activation of ERKs. The results presented here indicate that GTP-triggered [Ca(2+)](i) increase may be a key event in GTP signal transduction, which can modulate activity of ERKs. The physiological importance of the GTP effect lies in its capacity to interact with the NGF-activated pathway to enhance neurite outgrowth from PC12 cells.

    Topics: Animals; Barbiturates; Blotting, Western; Calcium; Calcium Channel Blockers; Cell Count; Cell Differentiation; Chelating Agents; Clotrimazole; Diagnostic Imaging; Dose-Response Relationship, Drug; Drug Synergism; Egtazic Acid; Enzyme Inhibitors; Extracellular Space; Fluorescent Antibody Technique; Fluorescent Dyes; Gallic Acid; Growth Inhibitors; Guanosine Triphosphate; Ionomycin; Ionophores; Isoxazoles; Membrane Potentials; Microscopy, Confocal; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nerve Growth Factor; Neurites; Nifedipine; PC12 Cells; Pertussis Toxin; Pyridoxal Phosphate; Rats; Signal Transduction; Suramin; Time Factors; Triazines

2004
Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid can antagonize the purinoceptor-mediated inhibition of M-current in bullfrog sympathetic neurons.
    Neuroscience letters, 2003, Feb-06, Volume: 337, Issue:2

    Whole-cell recordings of an M-type potassium current (I(M)) were made from dissociated bullfrog sympathetic neurons. Purinoceptor agonists inhibited I(M) with UTP>ADP>adenosine triphosphate=UDP>ATPgammaS=guanosine triphosphate (GTP)>>amyloid precursor protein (APP)(NH)P as the rank order of potency. The IC(50) was 35 nM for UTP, and 2.6 microM for GTP. Under conditions in which I(M) was abolished by UTP (1 microM), a sulfonic acid derivative, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (30-300 microM) recruited I(M) to 15 to 90% of its control in a reversible and concentration-dependent manner. These results indicate that PPADS can be useful as an antagonist for the purinoceptors presumably P2Y subtypes in amphibian autonomic neurons.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Amyloid beta-Protein Precursor; Animals; Guanosine Triphosphate; Membrane Potentials; Neurons; Potassium Channels; Purinergic Antagonists; Pyridoxal Phosphate; Rana catesbeiana; Receptors, Purinergic; Sympathetic Nervous System; Uridine Diphosphate; Uridine Triphosphate

2003
Regulation of transcervical permeability by two distinct P2 purinergic receptor mechanisms.
    American journal of physiology. Cell physiology, 2002, Volume: 282, Issue:1

    Micromolar concentrations of ATP stimulate biphasic change in transepithelial conductance across CaSki cultures, an acute increase (phase I response) followed by a slower decrease (phase II response). Phase I and phase II responses involve two distinct calcium-dependent pathways, calcium mobilization and calcium influx. To test the hypothesis that phase I and phase II responses are mediated by distinct P2 purinergic receptors, changes in permeability were uncoupled by blocking calcium mobilization with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or by lowering extracellular calcium, respectively. Under these conditions ATP EC(50) was 25 microM for phase I response and 2 microM for phase II response. The respective agonist profiles were ATP > UTP > adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma S) = N(6)-([6-aminohexyl]carbamoylmethyl)adenosine 5'-triphosphate (A8889) > GTP and UTP > ATP > GTP = A8889 > ATP-gamma S. Suramin blocked phase I response and ATP-induced calcium mobilization, whereas pyridoxal phosphate-6-azophenyl-2',4-disulfonic acid (PPADS) blocked phase II response and ATP-augmented calcium influx. ATP time course and pharmacological profiles for phase II response and augmented calcium influx were similar, with a time constant of 2 min and a saturable concentration-dependent effect (EC(50) of 2-3 microM). RT-PCR experiments revealed expression of mRNA for both the P2Y(2) and P2X(4) receptors. These results suggest that the ATP-induced phase I and phase II responses are mediated by distinct P2 purinergic receptor mechanisms.

    Topics: Adenosine Triphosphate; Antineoplastic Agents; Calcium; Calcium Signaling; Cell Membrane Permeability; Cells, Cultured; Cervix Uteri; Chelating Agents; Egtazic Acid; Epithelial Cells; Female; Guanosine Triphosphate; Humans; Platelet Aggregation Inhibitors; Purinergic P2 Receptor Agonists; Purinergic P2 Receptor Antagonists; Pyridoxal Phosphate; Receptors, Purinergic P2; Receptors, Purinergic P2X4; Receptors, Purinergic P2Y2; Suramin; Uridine Triphosphate

2002
Lack of run-down of smooth muscle P2X receptor currents recorded with the amphotericin permeabilized patch technique, physiological and pharmacological characterization of the properties of mesenteric artery P2X receptor ion channels.
    British journal of pharmacology, 2000, Volume: 131, Issue:8

    Immunoreactivity for P2X(1), P2X(4) and P2X(5) receptor subtypes was detected in the smooth muscle cell layer of second and third order rat mesenteric arteries immunoreactivity, for P2X(2), P2X(3), P2X(6) and P2X(7) receptors was below the level of detection in the smooth muscle layer. P2X receptor-mediated currents were recorded in patch clamp studies on acutely dissociated mesenteric artery smooth muscle cells. Purinergic agonists evoked transient inward currents that decayed rapidly in the continued presence of agonist (tau approximately 200 ms). Standard whole cell responses to repeated applications of agonist at 5 min intervals ran down. Run-down was unaffected by changes in extracellular calcium concentration, intracellular calcium buffering or the inclusion of ATP and GTP in the pipette solution. Run-down was overcome and reproducible responses to purinergic agonists were recorded using the amphotericin permeabilized patch recording configuration. The rank order of potency at the P2X receptor was ATP=2 methylthio ATP>alpha, beta-methylene ATP>CTP=l-beta,gamma-methylene ATP. Only ATP and 2meSATP were full agonists. The P2 receptor antagonists suramin and PPADS inhibited P2X receptor-mediated currents with IC(50)s of 4 microM and 70 nM respectively. These results provide further characterization of artery P2X receptors and demonstrate that the properties are dominated by a P2X(1)-like receptor phenotype. No evidence could be found for a phenotype corresponding to homomeric P2X(4) or P2X(5) receptors or to heteromeric P2X(1/5) receptors and the functional role of these receptors in arteries remains unclear.

    Topics: Adenosine Triphosphate; Amphotericin B; Animals; Calcium; Cell Membrane Permeability; Dose-Response Relationship, Drug; Guanosine Triphosphate; Immunohistochemistry; Ion Channels; Male; Membrane Potentials; Mesenteric Arteries; Muscle, Smooth, Vascular; Patch-Clamp Techniques; Pyridoxal Phosphate; Rats; Rats, Wistar; Receptors, Purinergic P2; Receptors, Purinergic P2X; Receptors, Purinergic P2X2; Receptors, Purinergic P2X3; Receptors, Purinergic P2X4; Receptors, Purinergic P2X5; Receptors, Purinergic P2X7; Suramin; Thionucleotides; Time Factors

2000
An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma.
    Journal of neurochemistry, 1999, Volume: 72, Issue:2

    The presence of a nucleotide pyrophosphatase (EC 3.6.1.9) on the plasma membrane of rat C6 glioma has been demonstrated by analysis of the hydrolysis of ATP labeled in the base and in the alpha- and gamma-phosphates. The enzyme degraded ATP into AMP and PPi and, depending on the ATP concentration, accounted for approximately 50-75% of the extracellular degradation of ATP. The association of the enzyme with the plasma membrane was confirmed by ATP hydrolysis in the presence of a varying concentration of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a membrane-impermeable inhibitor of the enzyme. PPADS concentration above 20 microM abolished the degradation of ATP into AMP and PPi. The nucleotide pyrophosphatase has an alkaline pH optimum and a Km for ATP of 17 +/- 5 microM. The enzyme has a broad substrate specificity and hydrolyzes nucleoside triphosphates, nucleoside diphosphates, dinucleoside polyphosphates, and nucleoside monophosphate esters but is inhibited by nucleoside monophosphates, adenosine 3',5'-bisphosphate, and PPADS. The substrate specificity characterizes the enzyme as a nucleotide pyrophosphatase/phosphodiesterase I (PD-I). Immunoblotting and autoadenylylation identified the enzyme as a plasma cell differentiation antigen-related protein. Hydrolysis of ATP terminates the autophosphorylation of a nucleoside diphosphate kinase (NDPK/nm23) detected in the conditioned medium of C6 cultures. A function of the pyrophosphatase/PD-I and NDPK in the purinergic and pyrimidinergic signal transduction in C6 is discussed.

    Topics: Adenosine Triphosphate; Animals; Astrocytes; Enzyme Inhibitors; Extracellular Space; Glioma; Guanosine Triphosphate; Hydrolysis; Nucleoside-Diphosphate Kinase; Phosphorus Radioisotopes; Phosphorylation; Platelet Aggregation Inhibitors; Pyridoxal Phosphate; Pyrophosphatases; Rats; Receptors, Purinergic; Stem Cells; Tumor Cells, Cultured

1999