guanosine-triphosphate and dolastatin-15

guanosine-triphosphate has been researched along with dolastatin-15* in 2 studies

Other Studies

2 other study(ies) available for guanosine-triphosphate and dolastatin-15

ArticleYear
Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin.
    Molecular pharmacology, 2003, Volume: 63, Issue:6

    The marine ascidian Diazona angulata was the source organism for the complex cytotoxic peptide diazonamide A. The molecular structure of this peptide was recently revised after synthesis of a biologically active analog of diazonamide A in which a single nitrogen atom was replaced by an oxygen atom. Diazonamide A causes cells to arrest in mitosis, and, after exposure to the drug, treated cells lose both interphase and spindle microtubules. Both diazonamide A and the oxygen analog are potent inhibitors of microtubule assembly, equivalent in activity to dolastatin 10 and therefore far more potent than dolastatin 15. This inhibition of microtubule assembly is accompanied by potent inhibition of tubulin-dependent GTP hydrolysis, also comparable with the effects observed with dolastatin 10. However, the remaining biochemical properties of diazonamide A and its analog differ markedly from those of dolastatin 10 and closely resemble the properties of dolastatin 15. Neither diazonamide A nor the analog inhibited the binding of [3H]vinblastine, [3H]dolastatin 10, or [8-14C]GTP to tubulin. Nor were they able to stabilize the colchicine binding activity of tubulin. These observations indicate either that diazonamide A and the analog have a unique binding site on tubulin differing from the vinca alkaloid and dolastatin 10 binding sites, or that diazonamide A and the analog bind weakly to unpolymerized tubulin but strongly to microtubule ends. If the latter is correct, diazonamide A and its oxygen analog should have uniquely potent inhibitory effects on the dynamic properties of microtubules.

    Topics: Animals; Antineoplastic Agents; Cell Division; Depsipeptides; Drug Screening Assays, Antitumor; Guanosine Triphosphate; Heterocyclic Compounds, 4 or More Rings; Humans; Hydrolysis; Microtubules; Mitosis; Oligopeptides; Oxazoles; Tubulin; Tumor Cells, Cultured

2003
Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia. Interaction with tubulin and effects of cellular microtubules.
    Biochemical pharmacology, 1992, Jun-23, Volume: 43, Issue:12

    Dolastatin 15, a seven-subunit depsipeptide derived from Dolabella auricularia, is a potent antimitotic agent structurally related to the antitubulin agent dolastatin 10, a five-subunit peptide obtained from the same organism. We have compared dolastatin 15 with dolastatin 10 for its effects on cells grown in culture and on biochemical properties of tubulin. The IC50 values for cell growth were obtained for dolastatin 15 with L1210 murine leukemia cells, human Burkitt lymphoma cells, and Chinese hamster ovary (CHO) cells (3, 3, and 5 nM with the three cell lines, respectively). For dolastatin 10, IC50 values of 0.4 and 0.5 nM were obtained with the L1210 and CHO cells, respectively. At toxic concentrations dolastatin 15 caused the leukemia and lymphoma cells to arrest in mitosis. In the CHO cells both dolastatin 15 and dolastatin 10 caused moderate loss of microtubules at the IC50 values and complete disappearance of microtubules at concentrations 10-fold higher. Despite its potency and the loss of microtubules in treated cells, the interaction of dolastatin 15 with tubulin in vitro was weak. Its IC50 value for inhibition of glutamate-induced polymerization of tubulin was 23 microM, as compared to values of 1.2 microM for dolastatin 10 and 1.5 microM for vinblastine. Dolastatin 10 noncompetitively inhibits the binding of vincristine to tubulin, inhibits nucleotide exchange, stabilizes the colchicine binding activity of tubulin, and inhibits tubulin-dependent GTP hydrolysis (Bai et al., Biochem Pharmacol 39: 1941-1949, 1990; Bai et al. J Biol Chem 265: 17141-17149, 1990). Only the latter reaction was inhibited by dolastatin 15. Nevertheless, its structural similarity to dolastatin 10 indicates that dolastatin 15 may bind weakly in the "vinca domain" of tubulin (a region of the protein we postulate to be physically close to but not identical with the specific binding site of vinca alkaloids and maytansinoids), presumably in the same site as dolastatin 10 (the "peptide site").

    Topics: Amino Acid Sequence; Animals; Antineoplastic Agents; Binding Sites; Cell Line; Depsipeptides; Glutamates; Guanosine Triphosphate; Microtubule-Associated Proteins; Microtubules; Mitotic Index; Molecular Sequence Data; Mollusca; Oligopeptides; Tubulin; Vinblastine

1992