guanosine-triphosphate has been researched along with 6-thioguanosine-5--diphosphate* in 15 studies
1 review(s) available for guanosine-triphosphate and 6-thioguanosine-5--diphosphate
Article | Year |
---|---|
Thiopurine therapies: problems, complexities, and progress with monitoring thioguanine nucleotides.
Metabolism of thiopurine drugs--azathioprine, 6-mercaptopurine, and 6-thioguanine--has provided a powerful pharmacogenetic model incorporating polymorphism of the enzyme thiopurine methyltransferase (TPMT) and the primary active metabolite, thioguanine nucleotide (TGN). However, a sense of uncertainty about the usefulness of TGNs and other thiopurine metabolites has appeared. This review critically appraises the basis of thiopurine metabolism and reveals the problems and complexities in TGN research. Erythrocyte TGN is used in transplantation medicine and in chronic inflammatory conditions such as Crohn's disease, as a "surrogate" pharmacokinetic parameter for TGN in the target cells: leukocytes or bone marrow. It is not generally appreciated that erythrocytes do not express the enzyme IMP dehydrogenase and cannot convert mercaptopurine to TGN, which explains some of the confusion in interpretation of erythrocyte TGN measurements. TGN routinely measured in erythrocytes derives from hepatic metabolism. Another concern is that TGN are not generally assayed directly: most methods assay the thiopurine bases. Ion-exchange HPLC and enzymatic conversion of TGNs to nucleosides have been used to overcome this, and may reveal undisclosed roles for an unusual cytotoxic nucleotide, thio-inosine triphosphate, and methylated thiopurines. There appear to be additional interactions between xanthine oxidase and TPMT, and folate and TPMT, that could predict leukopenia. Difficult questions remain to be answered, which may be assisted by technological advances. Prospective TGN studies, long overdue, are at last revealing clearer results. Topics: Azathioprine; Drug Monitoring; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Leukopenia; Mercaptopurine; Methylation; Methyltransferases; Nausea; Thioguanine; Thionucleotides; Xanthine Oxidase | 2005 |
1 trial(s) available for guanosine-triphosphate and 6-thioguanosine-5--diphosphate
Article | Year |
---|---|
Determination of 6-thioguanosine diphosphate and triphosphate and nucleoside diphosphate kinase activity in erythrocytes: novel targets for thiopurine therapy?
6-Thioguanine nucleotides are the sum of 6-thioguanosine 5'-monophosphate (TGMP), -diphosphate (TGDP), and -triphosphate (TGTP) representing essential metabolites involved in drug action of thiopurines. Elevated levels of TGDP have been associated with poor response to azathioprine therapy in patients with inflammatory bowel disease. The conversion of TGDP to TGTP is supposed to be catalyzed by nucleoside diphosphate kinase (NDPK). The aim of this work was to investigate simultaneously individual 6-thioguanosine phosphate levels and NDPK activity in red blood cells (RBCs) of patients on azathioprine therapy. Ion-pair high-performance liquid chromatography methods with fluorescence and ultraviolet detection were applied to quantify individual levels of 6-thioguanosine 5'-phosphates and NDPK activity, respectively, in RBCs. Recombinantly expressed NDPK isoforms A and B were unequivocally identified to catalyze the formation of TGTP (30.6 +/- 3.88 nmol x min x mg for NDPK A versus 41.2 +/- 1.05 nmol x min x mg for NDPK B). Comprehensive analyses on the stability of TGMP, TGDP, and TGTP and the reproducibility of NDPK activity in RBCs were performed to provide a reliable sampling protocol for clinical practice. Of note, isolation of RBCs within 6 hours followed by immediate storage at -80 degrees C is crucial for prevention of degradation of 5'-phosphates. In a clinical study of 37 patients on azathioprine, TGTP was the predominant 6-thioguanosine phosphate in RBCs. In contrast, three patients showed TGTP/(TGDP + TGTP) ratios of 57.2%, 64.3%, and 66% corresponding to elevated TGDP levels. NDPK activity ranged from 4.1 to 11.3 nmol x min x mg hemoglobin. No correlation between NDPK activity and the 6-thioguanosine phosphate levels was found. The question whether interindividual variability of NDPK activity may explain differences in 6-thioguanosine 5'-phosphates levels has to be investigated in a prospective large-scale study. Topics: Adolescent; Adult; Aged; Azathioprine; Catalysis; Drug Delivery Systems; Enzyme Activation; Erythrocytes; Female; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Male; Middle Aged; Nucleoside-Diphosphate Kinase; Purines; Thionucleotides; Young Adult | 2010 |
13 other study(ies) available for guanosine-triphosphate and 6-thioguanosine-5--diphosphate
Article | Year |
---|---|
The role of GTP-binding protein activity in fast central synaptic transmission.
Guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are involved in exocytosis, endocytosis, and recycling of vesicles in yeast and mammalian secretory cells. However, little is known about their contribution to fast synaptic transmission. We loaded guanine nucleotide analogs directly into a giant nerve terminal in rat brainstem slices. Inhibition of G-protein activity had no effect on basal synaptic transmission, but augmented synaptic depression and significantly slowed recovery from depression. A nonhydrolyzable GTP analog blocked recovery of transmission from activity-dependent depression. Neither effect was accompanied by a change in presynaptic calcium currents. Thus, G proteins contribute to fast synaptic transmission by refilling synaptic vesicles depleted after massive exocytosis. Topics: Action Potentials; Animals; Brain Stem; Calcium; Excitatory Postsynaptic Potentials; Exocytosis; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; In Vitro Techniques; Patch-Clamp Techniques; Presynaptic Terminals; Rats; Rats, Wistar; Synaptic Transmission; Synaptic Vesicles; Thionucleotides | 2000 |
Determination of intracellular levels of 6-mercaptopurine metabolites in erythrocytes utilizing capillary electrophoresis with laser-induced fluorescence detection.
Capillary electrophoresis proved to be a useful technique for the analysis of intracellular levels of 6-thioguanosine mono-, di-, and triphosphate with analysis times of 20 min. Conditions required for baseline separation of the thioguanine nucleotides consisted of a 25 mM KH2PO4 (pH 8.0) buffer and a separation voltage of +28 kV. Laser-induced fluorescence detection (lambda ex = 325 nm, lambda em = 410 nm) of the thioguanine nucleotide metabolites of 6-mercaptopurine (6-MP) was possible following oxidation of the thiol functionality. Tedious extraction procedures involving mercury cellulose resins or phenyl mercury adduct formation, which had been required previously for the selective extraction of thiopurines from erythrocytes, were unnecessary due to the overall specificity of the approach. However, the inclusion of 50 mM EDTA in the sample preparation was required to inhibit the anabolic/catabolic enzymatic activity, which was responsible for the degradation of the analytes. The method demonstrated linearity from 5 to 1700 pmol/100 microliters red blood cells for the three analytes (RSDs < or = 8%). The feasibility of the method was demonstrated for the quantitation of 6-thioguanine nucleotides in patients receiving either oral or intravenous 6-MP therapy. Topics: Electrophoresis; Erythrocytes; Fluorescence; Guanine Nucleotides; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Mercaptopurine; Thionucleotides | 1995 |
Interaction of the low-molecular-mass, guanine-nucleotide-binding protein with the actin-binding protein and its modulation by the cAMP-dependent protein kinase in bovine platelets.
Platelets have been shown to possess several, different, low-molecular-mass, guanine-nucleotide-binding proteins (G-proteins) with molecular masses about 20-30 kDa. We report here that a 25-kDa G-protein copurified with the bovine platelet actin-binding protein (ABP), a cross-linker of actin filaments which is known to generate the three-dimensional network of actin. Both the G-protein and ABP were recovered in a fraction that was insoluble in Triton X-100 and were extracted in 0.6 M NaCl. Gel-filtration chromatography of the high-salt extract and rechromatography in a low-salt solution indicated that the two proteins may be associated with each other. The association of the two proteins was suggested by cosedimentation of the G-protein with the actin gel formed by actin and ABP. The amounts of the cosedimented G-protein and ABP was unaffected by guanosine-5'-O-[beta-thio]diphosphate and guanosine-5'-O-[gamma-thio]triphosphate, but the G-protein, not ABP, was partially released from the actin gel by phosphorylating ABP with cAMP-dependent protein kinase. Thus, the association of the two proteins was affected by modification of ABP, but not by modification of G-proteins. The physiological significance of the possible association of the two proteins might be that the membrane skeleton functions as a modulator of the G-protein, rather than that the G-protein modulates the function of the membrane skeleton which comprises ABP. Topics: Affinity Labels; Animals; Azides; Blood Platelets; Blotting, Western; Cattle; Chromatography, Gel; Electrophoresis, Polyacrylamide Gel; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Microfilament Proteins; Molecular Weight; Phosphorylation; Photochemistry; Precipitin Tests; Protein Kinases; Thionucleotides | 1992 |
Involvement of a guanine-nucleotide-binding protein-mediated mechanism in the enhancement of arachidonic acid liberation by phorbol 12-myristate 13-acetate and Ca2+ in saponin-permeabilized platelets.
A mechanism by which protein kinase C potentiates arachidonic acid (AA) liberation in rabbit platelets was examined using [3H]AA-labeled, saponin (7 micrograms/ml)-permeabilized rabbit platelets. Pretreatment of the [3H]AA-labeled platelets with 4 beta-phorbol 12-myristate 13-acetate (PMA, 10-40 nM) or 1,2-dioctanoylglycerol (DOG, 20 microM) enhanced [3H]AA liberation induced by an addition of Ca2+ (1 mM) after cell permeabilization, whereas 4 alpha-phorbol 12,13-didecanoate (80 nM) did not exert such an effect. The potentiating effects of PMA and DOG were inhibited by staurosporine (200 nM). PMA (40 nM) also potentiated [3H]AA liberation induced by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S, 100 microM), 5'-guanylyl imidodiphosphate (200 microM) or NaF (20 mM) plus AlCl3 (10 microM) in the presence of Ca2+ (100 microM). The enhancement by PMA of the GTP gamma S-induced AA liberation was also inhibited by staurosporine (200 nM). Furthermore, guanosine 5'-[beta-thio]diphosphate (GDP beta S, 0.5-2 mM) suppressed the PMA (40 nM)- and DOG (20 microM)-enhanced, Ca2+ (1 mM)-dependent [3H]AA liberation. This inhibitory effect of GDP beta S was reversed by a further addition of GTP gamma S (200 microM). However, pertussis toxin (0.2-1 micrograms/ml) had no effect on the PMA-enhanced [3H]AA liberation. These results indicate a possibility that protein kinase C may potentiate AA liberation through a guanine-nucleotide-binding protein-mediated mechanism in saponin-permeabilized rabbit platelets. Topics: Alkaloids; Aluminum; Aluminum Chloride; Aluminum Compounds; Animals; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Calcium; Cell Membrane Permeability; Chlorides; Diglycerides; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Guanylyl Imidodiphosphate; Pertussis Toxin; Protein Kinase C; Rabbits; Saponins; Sodium Fluoride; Staurosporine; Tetradecanoylphorbol Acetate; Thionucleotides; Virulence Factors, Bordetella | 1990 |
The quantitative determination of metabolites of 6-mercaptopurine in biological materials. VII. Chemical synthesis by phosphorylation of 6-thioguanosine 5'-monophosphate, 5'-diphosphate and 5'-triphosphate, and their purification and identification by rev
A fast and reliable two-step method has been established for the chemical synthesis of 6-thioguanosine 5'-monophosphate, 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate starting from the ribonucleoside. In the first step, 6-thioguanosine dissolved in triethyl phosphate, at high yield reacts with phosphorus oxide trichloride to 6-thioguanosine 5'-monophosphate which is purified by anion-exchange chromatography on DEAE-Sephadex using a step gradient of hydrochloric acid. In the second step, 6-thioguanosine 5'-monophosphate dissolved in water, reacts with phosphoric acid in the presence of pyridine/dicyclohexyl carbodiimide and is converted to 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate which are separated from each other and from the 6-thioguanosine 5'-monophosphate by anion-exchange chromatography on DEAE-Sephadex using a gradient of ammonium bicarbonate. Material from each step of the preparation procedure is separated by reversed-phase HPLC chromatography and analyzed for its free ribonucleoside content, 5'-monophosphate, 5'-diphosphate, 5'-triphosphate and small amounts of unidentified phosphorylated compounds. The purity of the final preparations and the identity of each 6-thioguanosine 5'-phosphate are proven by highly specific enzymatic peak-shifting/HPLC analyses using alkaline phosphatase, 5'-nucleotidase, pyruvate kinase, nucleoside diphosphate kinase and combined hexokinase/glucose 6-phosphate dehydrogenase. Topics: Animals; Chromatography, High Pressure Liquid; Enzymes; Guanine Nucleotides; Guanosine Diphosphate; Guanosine Triphosphate; Kinetics; Mercaptopurine; Phosphorylation; Rabbits; Thionucleotides | 1990 |
Differential mechanisms of inositol phosphate generation at the receptors for bombesin and platelet-derived growth factor.
We investigated the mechanism(s) whereby activation of a growth-factor receptor typically endowed with tyrosine kinase activity, such as the platelet-derived growth factor (PDGF) receptor, triggers phosphoinositide hydrolysis. In Swiss 3T3 cells permeabilized with streptolysin O, an analogue of GTP, guanosine 5'-[gamma-thio]triphosphate, was found to potentiate the coupling of the bombesin receptor to phospholipase C. In contrast, the activation of the enzyme by PDGF occurred in a GTP-independent manner. Moreover, the inactive analogue of GTP, guanosine 5'-[beta-thio]diphosphate, significantly inhibited the bombesin-induced InsP3 generation, whereas it did not decrease the same effect when stimulated by PDGF. Topics: Animals; Bombesin; Cell Membrane Permeability; Enzyme Activation; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Mice; Platelet-Derived Growth Factor; Receptors, Bombesin; Receptors, Cell Surface; Receptors, Neurotransmitter; Receptors, Platelet-Derived Growth Factor; Thionucleotides; Type C Phospholipases | 1989 |
Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils.
Activation of the NADPH oxidase was examined in electrically permeabilized human neutrophils exposed to non-hydrolysable guanine nucleotides. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced a marked increase in the rate of O2 consumption, which was partially resistant to staurosporine, an inhibitor of protein kinase C, under conditions where the response to diacylglycerol was virtually abolished. The respiratory burst elicited by GTP[S] was dependent on the presence of ATP and Mg2+, suggesting involvement of phosphorylation reactions. Accordingly, phosphoprotein formation was greatly stimulated by the guanine nucleotide. The polypeptide phosphorylation pattern induced by GTP[S] was similar to, but not identical with, that observed with diacylglycerol, indicating the activation of kinases other than protein kinase C by the guanine nucleotide. The possible involvement of tyrosine kinases was assessed by immunoblotting using anti-phosphotyrosine antibodies. Treatment of electroporated cells with GTP[S] stimulated the accumulation of tyrosine-phosphorylated proteins. This effect was not induced by diacylglycerol, indicating that tyrosine phosphorylation is not secondary to stimulation of protein kinase C. The results indicate that, in neutrophils, activated G-proteins can stimulate tyrosine kinase and/or inhibit tyrosine phosphatase activity. Changes in the amounts of tyrosine-phosphorylated proteins may signal activation of the respiratory burst. Topics: Adenosine Triphosphate; Guanine; Guanine Nucleotides; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Magnesium; Neutrophils; Phosphorylation; Thionucleotides; Tyrosine | 1989 |
Action of guanosine 5'-[beta-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets.
The non-hydrolysable guanine analogues guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta-thio]diphosphate (GDP[S]) have been used extensively (as promoters and inhibitors respectively) to probe the importance of G-protein function. We report on the use of GDP[S] in permeabilized and intact platelets. The stimulatory analogue GTP[S] (9-60 microM) induces shape change, aggregation and 5-hydroxy[14C]-tryptamine secretion when added to saponin (12-14 micrograms/ml)-permeabilized platelets, but not to intact platelets. In line with the activation responses in permeabilized cells, GTP[S] induces an increase in [32P]-phosphatidic acid, which is indicative of phospholipase C activity. GDP[S] (greater than 400 microM) totally inhibits GTP[S] (90 microM)-stimulated phospholipase C activity and functional responses in saponized platelets. GDP[S] (1 mM) was also effective at inhibiting low-dose thrombin (0.1 unit/ml)-induced aggregation and secretion responses (without affecting shape change) in permeabilized platelets with inhibition of [32P]-phosphatidic acid formation. At higher doses of thrombin (greater than 0.5 unit/ml), both functional responses and [32P]phosphatidic acid formation are restored in the presence of GDP[S]. Studies on intact cells revealed that GDP[S] was as effective at inhibiting low-dose thrombin-induced functional responses as in the permeabilized cells, but there was no inhibition of [32P]phosphatidic acid formation, indicating that the agent is nonmembrane-penetrating. This reflected the fact that GDP[S] has additional inhibitory sites on the surface of platelets. In Fura-2-loaded cells GDP[S] inhibited thrombin-induced Ca2+ mobilization, as measured by Fura-2 fluorescence, in a dose-dependent manner. In studies with and without Ca2+ present on the outside, the effect of GDP[S] was to block Ca2+ influx. These studies indicate that, although GDP[S] is a valuable tool in studying G-protein function in permeabilized cells, it also has inhibitory activities on the surface of platelets, and one of these has been identified as an effect on the Ca2+-influx channel after agonist stimulation. Topics: Blood Platelets; Calcium; Cell Membrane; Creatine Kinase; Guanine Nucleotides; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Humans; In Vitro Techniques; Manganese; Phosphatidic Acids; Platelet Aggregation; Saponins; Serotonin; Stimulation, Chemical; Thionucleotides; Thrombin | 1988 |
Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery.
1. The effects of activation of guanine nucleotide-binding protein (G protein) by guanine nucleotides or sodium fluoride on the release of intracellular Ca2+ and on tension development were determined in chemically skinned strips of rabbit main pulmonary arteries (MPA). Ca2+ movements were monitored with Fura-2, as the change in free Ca2+ concentration in the bath medium surrounding the skinned MPA. 2. Sodium fluoride or non-hydrolysable analogues of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and guanosine 5'-[beta,gamma-imido]triphosphate (GMP-PNP), induced sustained and dose-dependent contraction of skinned MPA. GTP (100 microM) induced transient contraction of skinned MPA. GTP gamma S did not contract intact MPA. We also confirmed that inositol 1,4,5-trisphosphate (InsP3) released sufficient Ca2+ to induce contraction of skinned, but not intact, MPA. 3. Guanosine 5'-[beta-thio]diphosphate (GDP beta S), a non-hydrolysable analogue of GDP that competitively inhibits the binding of guanine nucleotides to G proteins, inhibited the contractions induced by GTP gamma S. Neomycin (1 mM) inhibited the GTP gamma S-induced contractions, but also, to a lesser extent, contractions induced by caffeine. 4. Depletion of Ca2+ from the sarcoplasmic reticulum (SR) or treatment with Triton X-100 inhibited the GTP gamma S-induced contractions. The effects of Ca2+ depletion was reversible, while that of Triton X-100 was irreversible. GTP gamma S (up to 100 microM) had no apparent effect on the pCa-tension curve of freeze-glycerinated MPA. 5. GTP gamma S- or InsP3-induced contractions occurred in the presence of 20 mM-procaine, while this agent completely blocked the contraction induced by caffeine. 6. Both GTP gamma S and InsP3 induced an increase in the Fura-2 fluorescence signal of the bath medium surrounding the skinned MPA, indicating that GTP gamma S releases intracellular Ca2+. The release of Ca2+ induced by GTP gamma S was inhibited by GDP beta S. 7. During the initial phasic contraction induced by GTP gamma S, added InsP3 had little or no additive effect, in contrast to its additive effect during the latter sustained contraction induced by GTP gamma S.(ABSTRACT TRUNCATED AT 400 WORDS) Topics: Animals; Calcium; Dose-Response Relationship, Drug; GTP-Binding Proteins; Guanine Nucleotides; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Male; Muscle, Smooth, Vascular; Pulmonary Artery; Rabbits; Sodium Fluoride; Sugar Phosphates; Thionucleotides; Vasoconstriction | 1988 |
Activation of rat liver adenylate cyclase by guanosine 5'-[beta,gamma-imido]triphosphate and glucagon. Existence of reversibly and irreversibly activated states of the stimulatory GTP-binding protein.
The effects of guanosine 5'-[beta-thio]diphosphate (GDP[S]) on the kinetics of activation of rat liver membrane adenylate cyclase by guanosine 5'-[beta,gamma-imido]triphosphate (p[NH]ppG) were examined. GDP[S] caused immediate inhibition of the activation by p[NH]ppG at all time points tested. Substantial inhibition by GDP[S] was observed even after the time required for the enzyme to reach its steady-state activity, but the extent of inhibition became progressively smaller as the preincubation time with p[NH]ppG increased. The rate at which adenylate cyclase became quasi-irreversibly activated was a strictly first-order process. In the presence of glucagon, the formation of the irreversibly activated state was much slower. A combination of GDP[S] and glucagon could partially reverse the quasi-irreversible activation by p[NH]ppG. Glucagon decreased the lag time required for p[NH]ppG to activate adenylate cyclase and increased the extent of activation by p[NH]ppG. This stimulatory effect of the hormone on top of guanine nucleotide decreased on preincubation with p[NH]ppG, but not with GTP. Our results suggest that the activation of adenylate cyclase by non-hydrolysable GTP analogues is a two-stage process: the formation of a reversibly activated form (G rev) is a rapid process, followed by a much slower formation of the quasi-irreversibly activated form (G irr). Glucagon can stimulate G rev but not G irr, and can partially facilitate the formation of the G rev from the G irr state. Topics: Adenylyl Cyclases; Animals; Cyclic AMP; Enzyme Activation; Glucagon; GTP-Binding Proteins; Guanosine Diphosphate; Guanosine Triphosphate; Guanylyl Imidodiphosphate; Kinetics; Liver; Rats; Thionucleotides | 1986 |
A kinetic analysis of the interaction of elongation factor Tu with guanosine nucleotides and elongation factor Ts.
The interaction of elongation factor Tu (EF-Tu) and elongation factor Ts (EF-Ts) from Escherichia coli has been investigated by kinetic methods. It was found that EF-Ts purified on an EF-Tu affinity column contained a transphosphorylase activity which could transfer the gamma-phosphate of GTP to [3H]GDP. However, this activity showed different sensitivities to heat and N-ethylmaleimide compared to the EF-Ts activity. Using the chromophoric GDP analogue, 2-amino-6-mercaptopurine riboside 5'-diphosphate (thioGDP), spectrophotometric titrations and stopped-flow experiments enabled the interaction of EF-Tu X thioGDP with EF-Ts and of EF-Tu X EF-Ts with thioGDP to be investigated. The results were analyzed according to the scheme of Chau et al. (Chau, V., Romero, G., and Biltonen, R.L. (1981) J. Biol. Chem. 256, 5591-5596). (Formula: see text) Values for the rate constants obtained were k1 greater than or equal to 2 X 10(8) M-1 s-1, k-1 greater than or equal to 2600 s-1, k2 = 500 s-1, and k-2 = 4 X 10(5) M-1 s-1. The most notable feature of these results is that EF-Ts binds to EF-Tu X thioGDP at a rate approaching that expected for a diffusion-controlled reaction whereas thioGDP binds to EF-Tu X EF-Ts several orders of magnitude more slowly than this. The relevance of these results to the interactions involving GDP is discussed. Topics: Escherichia coli; Guanine Nucleotides; Guanosine Diphosphate; Guanosine Triphosphate; Kinetics; Peptide Elongation Factor Tu; Peptide Elongation Factors; Thionucleotides; Tritium | 1984 |
Light-induced interactions between rhodopsin and the GTP-binding protein. Relation with phosphodiesterase activation.
The existence of rapid light-induced changes of light scattering in suspensions of bovine rod outer segment membranes has been described previously [H. Kühn et al. (1981) Proc. Natl Acad. Sci. USA, 78, 6873-6877]. The signal observed in the presence of GTP has been interpreted as being related to the rhodopsin-catalyzed exchange of GTP for GDP bound to the GTP-binding protein, i.e. to the formation of the activator of the cGMP phosphodiesterase [B.K.K. Fung et al. (1981) Proc. Natl Acad. Sci. USA, 78, 152-156]. We have tested this interpretation in the present paper by investigating the relation between the light-scattering signal and the activity of the phosphodiesterase using rapid recording techniques for both processes. All the results obtained are consistent with the above hypothesis. The amplitude of the light-scattering signal and the activity of the phosphodiesterase are shown to present the same dependence upon the flash intensity and upon the concentration of GTP or its analog guanosine 5'-[beta, gamma--imido]triphosphate (p[NH]ppG). The results suggest that the GTP-binding protein possesses one high-affinity p[NH]ppG-binding site (Kd much less than 0.1 microM). At high concentrations of GTP or p[NH]ppG the phosphodiesterase is activated in the dark and the light-scattering signal is correspondingly reduced; both effects are prevented by previous incubation with guanosine 5'-[beta-thio]diphosphate (p[S]pG). Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Cattle; Enzyme Activation; GTP-Binding Proteins; Guanosine Diphosphate; Guanosine Triphosphate; Guanylyl Imidodiphosphate; Light; Receptors, Cell Surface; Retinal Pigments; Rhodopsin; Scattering, Radiation; Thionucleotides | 1982 |
Spectroscopic studies of the nucleotide binding site of elongation factor Tu from Escherichia coli. An approach to characterizing the elementary steps of the elongation cycle of protein biosynthesis.
Topics: Azides; Escherichia coli; Guanosine Diphosphate; Guanosine Triphosphate; Inosine Monophosphate; Kinetics; Peptide Chain Elongation, Translational; Peptide Elongation Factor Tu; Peptide Elongation Factors; Protein Binding; Ribonucleotides; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Thionucleotides | 1981 |