guanosine-triphosphate and 3-nitropropionic-acid

guanosine-triphosphate has been researched along with 3-nitropropionic-acid* in 2 studies

Other Studies

2 other study(ies) available for guanosine-triphosphate and 3-nitropropionic-acid

ArticleYear
Impaired mitochondrial function results in increased tissue transglutaminase activity in situ.
    Journal of neurochemistry, 2000, Volume: 75, Issue:5

    Tissue transglutaminase (tTG) is a transamidating enzyme that is elevated in Huntington's disease (HD) brain and may be involved in the etiology of the disease. Further, there is evidence of impaired mitochondrial function in HD. Therefore, in this study, we examined the effects of mitochondrial dysfunction on the transamidating activity of tTG. Neuroblastoma SH-SY5Y cells stably overexpressing human tTG or mutated inactive tTG were treated with 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase. 3-NP treatment of tTG-expressing cells resulted in a significant increase of TG activity in situ. In vitro measurements demonstrated that 3-NP had no direct effect on tTG activity. However, 3-NP treatment resulted in a significant decrease of the levels of GTP and ATP, two potent inhibitors of the transamidating activity of tTG. No significant changes in the intracellular levels of calcium were observed in 3-NP-treated cells. Treatment with 3-NP in combination with antioxidants significantly reduced the 3-NP-induced increase in in situ TG activity, demonstrating that oxidative stress is a contributing factor to the increase of TG activity. This study demonstrates for the first time that impairment of mitochondrial function significantly increases TG activity in situ, a finding that may have important relevance to the etiology of HD.

    Topics: Adenosine Triphosphate; Antioxidants; Calcium; Dose-Response Relationship, Drug; GTP-Binding Proteins; Guanosine Triphosphate; Humans; Huntington Disease; Marine Toxins; Mitochondria; Neuroblastoma; Nitro Compounds; Oxidative Stress; Oxocins; Propionates; Protein Glutamine gamma Glutamyltransferase 2; Succinate Dehydrogenase; Transfection; Transglutaminases; Tumor Cells, Cultured

2000
Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases.
    Journal of neurochemistry, 1994, Volume: 63, Issue:3

    3-Nitropropionic acid (3-NPA) inhibited synaptosomal respiration in a dose-dependent manner; the degree of inhibition by the same concentration of the compound was greater, however, when respiration was stimulated by concomitant increase in ATP usage. The most rapid event after addition of 3-NPA was a decrease in [creatine phosphate]/[creatine] ([CrP]/[Cr]) and an increase in [lactate]/[pyruvate]. A fall in [ATP]/[ADP] and [GTP]/[GDP] was initially less pronounced but closely followed that in [CrP]/[Cr]. In the absence of glutamine, 3-NPA caused a pronounced decrease in internal aspartate level and a small reduction in glutamate concentration, whereas [GABA] rose; the sum of these three amino acids inside synaptosomes fell, but there were no increases in their external levels. With glutamine in the medium, the reduction in intrasynaptosomal aspartate was accompanied by increases in intrasynaptosomal glutamate and GABA. The external concentration of glutamate rose substantially in the presence of the inhibitor. 3-NPA had no effect on basal release of either glutamate (and GABA) or biogenic amines but increased efflux occurring upon addition of nonsaturating concentrations of the depolarizing agents veratridine and KCl. The results allow the following predictions with respect to the behavior of brain metabolism in neurodegenerative diseases that involve restrictions of mitochondrial function: (1) The extent of inhibition of mitochondrial ATP generation is expected to be greater in cells with high energy demand. The earliest signs of impairment of the respiratory chain function are a fall in [PCr]/[Cr] (or a rise in [Pi]/[CrP]) and an increase in [lactate]/[pyruvate]. (2) A fall in [GTP]/[GDP] can limit protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adenosine Triphosphate; Animals; Brain Diseases; Cell Death; Creatine; Energy Metabolism; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glutamine; Guanosine Diphosphate; Guanosine Triphosphate; Lactates; Lactic Acid; Male; Neurotransmitter Agents; Nitro Compounds; Oxygen Consumption; Phosphocreatine; Propionates; Pyruvates; Pyruvic Acid; Rats; Rats, Sprague-Dawley; Synaptosomes

1994