guanosine-triphosphate and 1-3-ditolylguanidine

guanosine-triphosphate has been researched along with 1-3-ditolylguanidine* in 4 studies

Other Studies

4 other study(ies) available for guanosine-triphosphate and 1-3-ditolylguanidine

ArticleYear
sigma Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons.
    The Journal of pharmacology and experimental therapeutics, 2005, Volume: 313, Issue:3

    The sigma receptors have been implicated in the regulation of the cardiovascular system, and sigma-1 receptor transcripts have been found in parasympathetic intracardiac neurons. However, the cellular function of sigma-1 receptors in these cells remains to be determined. Effects of sigma receptor activation on voltage-activated K(+) channels and action potential firing were studied in isolated intracardiac neurons using whole-cell patch-clamp recording techniques. Activation of sigma receptors reversibly blocked delayed outwardly rectifying potassium channels, large conductance Ca(2+)-sensitive K(+) channels, and the M-current with maximal inhibition >80%. The inhibition of K(+) channels by sigma ligands was dose-dependent, and the rank order potency of (+)-pentazocine > ibogaine > 1,3-di-O-tolyguanidin (DTG) suggests that the effect is mediated by sigma-1 receptor activation. Preincubation of neurons with the irreversible sigma receptor antagonist metaphit blocked DTG-induced inhibition of K(+) channels, confirming that the effect is mediated by sigma receptor activation. Although bath application of sigma ligands depolarized intracardiac neurons, the number of action potentials fired by the cells in response to depolarizing current pulses was decreased in the presence of these drugs. Neither dialysis of the neurons nor application of intracellular 5'-O-(2-thiodiphosphate) trilithium salt inhibited the effect of sigma receptors on K(+) channels, which suggests that the signal transduction pathway does not involve a diffusible cytosolic second messenger or a G protein. Together, these data suggest that sigma-1 receptors are directly coupled to K(+) channels in intracardiac neurons. Furthermore, activation of sigma-1 receptors depresses the excitability of intracardiac neurons and is thus likely to block parasympathetic input to the heart.

    Topics: Action Potentials; Animals; Calcium; Dose-Response Relationship, Drug; Guanidines; Guanosine Diphosphate; Guanosine Triphosphate; Heart; Neurons; Phencyclidine; Potassium Channels; Rats; Receptors, sigma; Thionucleotides

2005
Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons.
    Journal of neurophysiology, 2002, Volume: 87, Issue:6

    Studies on the expression and cellular function of sigma receptors in autonomic neurons were conducted in neonatal rat intracardiac and superior cervical (SCG) ganglia. Individual neurons from SCG and intracardiac ganglia were shown to express transcripts encoding the sigma-1 receptor using single-cell RT-PCR techniques. The relationship between sigma receptors and calcium channels was studied in isolated neurons of these ganglia under voltage-clamp mode using the perforated-patch configuration of the whole cell patch-clamp recording technique. Bath application of sigma receptor agonists was shown to rapidly depress peak calcium channel currents in a reversible manner in both SCG and intracardiac ganglion neurons. The inhibition of barium (I(Ba)) currents was dose-dependent, and half-maximal inhibitory concentration (IC50) values for haloperidol, ibogaine, (+)-pentazocine, and 1,3-Di-O-tolylguanidin (DTG) were 6, 31, 61, and 133 microM, respectively. The rank order potency of haloperidol > ibogaine > (+)-pentazocine > DTG is consistent with the effects on calcium channels being mediated by a sigma-2 receptor. Preincubation of neurons with the irreversible sigma receptor antagonist, metaphit, blocked DTG-mediated inhibition of Ca2+ channel currents. Maximum inhibition of calcium channel currents was > or =95%, suggesting that sigma receptors block all calcium channel subtypes found on the cell body of these neurons, which includes N-, L-, P/Q-, and R-type calcium channels. In addition to depressing peak Ca2+ channel current, sigma receptors altered the biophysical properties of these channels. Following sigma receptor activation, Ca2+ channel inactivation rate was accelerated, and the voltage dependence of both steady-state inactivation and activation shifted toward more negative potentials. Experiments on the signal transduction cascade coupling sigma receptors and Ca2+ channels demonstrated that neither cell dialysis nor intracellular application of 100 microM guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDP-beta-S) abolished the modulation of I(Ba) by sigma receptor agonists. These data suggest that neither a diffusible cytosolic second messenger nor a G protein is involved in this pathway. Activation of sigma receptors on sympathetic and parasympathetic neurons is likely to modulate cell-to-cell signaling in autonomic ganglia and thus the regulation of cardiac function by the peripheral nervous system.

    Topics: Analgesics, Opioid; Animals; Anticonvulsants; Calcium; Calcium Channels; Cells, Cultured; Dopamine Antagonists; Excitatory Amino Acid Antagonists; Ganglia, Parasympathetic; Gene Expression; Guanidines; Guanosine Diphosphate; Guanosine Triphosphate; Haloperidol; Ibogaine; Ion Channel Gating; Membrane Potentials; Microdialysis; Neurons; Pentazocine; Rats; Receptors, sigma; RNA, Messenger; Signal Transduction; Superior Cervical Ganglion; Thionucleotides

2002
Pharmacology of [3H]R(+)-7-OH-DPAT binding in the rat caudate-putamen.
    Neurochemistry international, 2001, Volume: 38, Issue:1

    Dopamine D3 receptors may be involved in drug addiction and in disorders such as schizophrenia and Parkinson's disease. To determine the pharmacological properties of dopamine D3 receptors in the rat caudate-putamen, we have investigated R(+)-[3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]R(+)-7-OH-DPAT) binding to membrane preparations from the rat caudate-putamen. Kinetic analyses showed that [3H]R(+)-7-OH-DPAT binding reached equilibrium in approximately 1 h and that both association and dissociation curves were composed of at least two components. Likewise, saturation curves showed at least two binding components with a combined Bmax value of about 600 fmol/mg protein, which is three times higher than what is present in the subcortical limbic area. Competition curves were performed with agonists such as R(-)-propylnorapomorphine, dopamine, PD 128907, quinpirole, and bromocriptine, and antagonists such as haloperidol, raclopride, clozapine, GR 218231x, remoxipride, and U99194A. These experiments revealed that [3H]R(+)-7-OH-DPAT binding could be resolved into three specific binding sites (R1-R3) and one nonspecific binding site, with R1-R2 probably representing D3 receptor binding and the minor R3 representing D2 receptor binding. The low affinities of (+/-)-8-OH-DPAT and 1,3-di(2-tolyl)guanidine to inhibit [3H]R(+)-7-OH-DPAT binding indicate negligible involvement of 5-HT1A or sigma binding sites, respectively. The pharmacological profile of [3H]R(+)-7-OH-DPAT (2 nM) binding in the caudate-putamen was similar to that of dopamine on [125I]iodosulpride binding in the cerebellar lobule X, which contain D3 but not D2 receptors. Mg2+ increased and GTP and Na+ decreased the binding of [3H]R(+)-7-OH-DPAT, suggesting a coupling of endogenous D3 receptors to G proteins. Taken together, these results suggest that dopamine D3 receptors display multiple agonist binding states, and that D3 receptors are present in high concentrations in the rat caudate-putamen. These results may have implications for the physiological and pathological roles of dopamine D3 receptors in the brain.

    Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Benzopyrans; Binding, Competitive; Caudate Nucleus; Clozapine; Dopamine; Dopamine Agonists; Dopamine Antagonists; Guanidines; Guanosine Triphosphate; Haloperidol; Heterotrimeric GTP-Binding Proteins; Indans; Kinetics; Magnesium; Male; Oxazines; Protein Binding; Putamen; Quinpirole; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Receptors, Dopamine D3; Remoxipride; Sodium; Specific Pathogen-Free Organisms; Sulfones; Sulpiride; Tetrahydronaphthalenes

2001
Regulation of sigma-receptors: high- and low-affinity agonist states, GTP shifts, and up-regulation by rimcazole and 1,3-Di(2-tolyl)guanidine.
    Journal of neurochemistry, 1989, Volume: 53, Issue:3

    The regulation of the central sigma-binding site was investigated using both in vitro and in vivo manipulations in conjunction with radioligand binding. The displacement of the binding of R(+)-[3H]3-[3-hydroxyphenyl]-N-(1-propyl)piperidine [R(+)-[3H]3-PPP] to cortical homogenates by a range of drugs was consistent with the site labelled being a sigma-receptor. (+)-SKF 10,047, (-)-SKF 10,047, (+/-)-cyclazocine, phencyclidine, and dexoxadrol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of less than 1. Further analysis employing nonlinear curve fitting techniques demonstrated that displacement data for these compounds were described better by a model whereby R(+)-[3H]3-PPP was displaced from two discrete sites; approximately 65% of the total sites were in the high-affinity state. In the presence of 10 mM Mg2+ and 0.3 mM GTP, displacement curves for (+)-SKF 10,047 and (+/-)-cyclazocine were shifted to the right. These findings were due to the shift of some 15% of the high-affinity binding sites to a low-affinity state. Saturation experiments revealed that 0.3 mM GTP acted competitively to decrease the affinity of R(+)-[3H]3-PPP for the sigma sites. The sigma-binding site was thus likely to be linked to a guanine nucleotide regulatory (G) protein. Thus sigma drugs could be subdivided on the basis of their GTP sensitivity and pseudo-Hill coefficients, and by analogy with other receptors R(+)-3-PPP, (+)-SKF 10,047, and (+/-)-cyclazocine, may be putative sigma-agonists. 1,3-Di(2-tolyl)guanidine (DTG), rimcazole, and haloperidol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of approximately unity and thus may be sigma-antagonists. Subchronic treatment with rimcazole was characterized by slight sedation and a concomitant up-regulation, with a decrease in the affinity, of sigma-binding sites. The schedule of rimcazole also increased dopamine turnover in the nucleus accumbens; both the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine ratio were elevated. DTG produced similar alterations to the binding parameters of the sigma-binding site; however, changes were not observed in general behavior or accumbal dopamine turnover. sigma-Receptors are likely to be linked to a G protein and are functionally involved in the CNS.

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Binding, Competitive; Brain; Carbazoles; Cyclazocine; Dopamine; Dopamine Agents; GTP-Binding Proteins; Guanidines; Guanosine Triphosphate; Magnesium; Male; Phenazocine; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma

1989