guanosine-monophosphate and triphosphoric-acid

guanosine-monophosphate has been researched along with triphosphoric-acid* in 2 studies

Other Studies

2 other study(ies) available for guanosine-monophosphate and triphosphoric-acid

ArticleYear
Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2015, Sep-01, Volume: 1000

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2)) linear regression model. Intra-assay and inter-assay precision (CV, %) ranged from 2.3% to 5.5% and accuracy within ±2.2% from nominal. INX-08032 was found to be stable in acidified mouse plasma for at least 24h in wet ice bath, 125 days at -70°C and following at least three freeze-thaw cycles. No endogenous components in plasma were found to interfere with the measurement. The extraction recovery was between 90% and 95%. The assays for BMS-986094, INX-08144, INX-09054 and INX-09114 were qualified

    Topics: Animals; Chromatography, Liquid; Guanosine Monophosphate; Haplorhini; Linear Models; Mice; Models, Molecular; Polyphosphates; Rabbits; Rats; Reproducibility of Results; Sensitivity and Specificity; Tandem Mass Spectrometry; Tissue Distribution

2015
Molecular dynamics DFT:B3LYP study of guanosinetriphosphate conversion into guanosinemonophosphate upon Mg2+ chelation of alpha and beta phosphate oxygens of the triphosphate tail.
    Physical chemistry chemical physics : PCCP, 2006, May-14, Volume: 8, Issue:18

    A molecular dynamics DFT:B3LYP (6-31G(**) basis set) study is used to elucidate the mechanism of guanosinetriphosphate (GTP) conversion into guanosinemonophosphate (GMP) upon the action of Mg(2+) (magnesium cofactor). The computations are carried out at 310 K in a volume of 178 water molecules, which surround the Mg(2+)-GTP complex and imitate the effect of solution. Over 5 ps, Mg(2+)-GTP appears to be fully decomposed, yielding five final products: two hydrated molecules of inorganic phosphate Pi, a hydrated Mg(2+), atomic oxygen (which in the course of a couple of subsequent reactions gains two hydrogens and converts into a water molecule) and a highly active *GMP radical. The radical production is linked to presence of Mg(2+), which initiates a radical mechanism of GTP cleavage. At the initial stage, Mg(2+) undergoes reduction to Mg(+), accompanied by the formation of an ion-radical pair with GTP, (+)Mg*-*GTP(3-). Without Mg(2+), an inert form of GMP (the ionic mechanism of GTP hydrolytic cleavage) rather than GMP is produced. *GMP production, which is similar to that of *AMP (adenosinemonophosphate), *CMP (cytidinemonophosphate), TMP (thymidinemonophosphate) and *UMP (uridinemonophosphate), plays a crucial role in DNA and RNA single chain synthesis.

    Topics: Chelating Agents; DNA; Guanosine Monophosphate; Guanosine Triphosphate; Hydrolysis; Magnesium; Models, Chemical; Molecular Conformation; Oxygen; Phosphates; Polyphosphates; Pyrimidine Nucleotides; RNA

2006