guanosine-monophosphate and deoxyguanylyl-(3--5-)-guanosine

guanosine-monophosphate has been researched along with deoxyguanylyl-(3--5-)-guanosine* in 3 studies

Other Studies

3 other study(ies) available for guanosine-monophosphate and deoxyguanylyl-(3--5-)-guanosine

ArticleYear
A 1,2-d(GpG) cisplatin intrastrand cross-link influences the rotational and translational setting of DNA in nucleosomes.
    Journal of the American Chemical Society, 2008, Mar-05, Volume: 130, Issue:9

    The mechanism of action of platinum-based anticancer drugs such as cis-diamminedichloroplatinum(II), or cisplatin, involves three early steps: cell entry, drug activation, and target binding. A major target in the cell, responsible for the anticancer activity, is nuclear DNA, which is packaged in nucleosomes that comprise chromatin. It is important to understand the nature of platinum-DNA interactions at the level of the nucleosome. The cis-{Pt(NH3)2}2+ 1,2-d(GpG) intrastrand cross-link is the DNA lesion most commonly encountered following cisplatin treatment. We therefore assembled two site-specifically platinated nucleosomes using synthetic DNA containing defined cis-{Pt(NH3)2}2+ 1,2-d(GpG) cross-links and core histones from HeLa-S3 cancer cells. The structures of these complexes were investigated by hydroxyl radical footprinting and exonuclease III mapping. Our experiments demonstrate that the 1,2-d(GpG) cross-link alters the rotational setting of the DNA on the histone octamer core such that the lesion faces inward, with disposition angles of the major groove relative to the core of xi approximately -20 degrees and xi approximately 40 degrees . We observe increased solvent accessibility of the platinated DNA strand, which may be caused by a structural perturbation in proximity of the 1,2-d(GpG) cisplatin lesion. The effect of the 1,2-d(GpG) cisplatin adduct on the translational setting of the nucleosomal DNA depends strongly on the position of the adduct within the sequence. If the cross-link is located at a site that is in phase with the preferred rotational setting of the unplatinated nucleosomal DNA, the effect on the translational position is negligible. Minor exonuclease III digestion products in this substrate indicate that the cisplatin adduct permits only those translational settings that differ from one another by integral numbers of DNA helical turns. If the lesion is located out of phase with the preferred rotational setting, the translational position of the main conformation was shifted by 5 bp. Additionally, a fraction of platinated nucleosomes with widely distributed translational positions was observed, suggesting increased nucleosome sliding relative to platinated nucleosomes containing the 1,3-intrastrand d(GpTpG) cross-link investigated previously (Ober, M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 6278-6286).

    Topics: Cisplatin; Cross-Linking Reagents; Dinucleoside Phosphates; DNA; DNA Damage; Guanosine Monophosphate; Hydroxyl Radical; Nucleic Acid Conformation; Nucleosomes; Oligonucleotides; Rotation

2008
Effect of geometric isomerism in dinuclear platinum antitumour complexes on the rate of formation and structure of intrastrand adducts with oligonucleotides.
    Nucleic acids research, 1997, Mar-15, Volume: 25, Issue:6

    The dinuclear platinum complexes [[trans -PtCl (NH3)2]2[mu]-[NH2(CH2) n NH2]](NO3)2[1,1/t,t ( n = 4,6)] and [[cis-PtCl(NH3)2]2[mu];-[NH2(CH2) n NH2](NO3) 2[1,1/c,c ( n = 4,6)] exhibit antitumour activity comparable with cisplatin. 1,1/c,c complexes do not form 1,2 GG intrastrand adducts, the major adduct of cisplatin, with double-stranded DNA. This 1H NMR spectroscopy study shows that, in the absence of a complementary strand, 1,1/c,c ( n = 4,6) form a 1,2 GG (N7, N7) intrastrand adduct with r(GpG), d(GpG) and d(TGGT). Initial binding to r(GpG) (and also reaction with GMP) at 37 degrees C was slower for 1,1/c,c compared with 1,1/t,t, whereas the second binding step (adduct closure) was faster for 1,1/c,c. However, the 1H NMR spectra of the 1,1/c,c adducts at 37 degrees C show two H8 signals, one of which is broad and becomes sharper on increasing the temperature, indicating restricted rotation around the Pt-N7 bond. For the d(GpG)-1,1/c,c ( n = 4) adduct, 2D NMR spectroscopy assigned the broad H8 signal to the 3' G, which has syn base orientation and 60% S-type/40% N-type sugar conformation. The 5' G has anti base orientation and S-type sugar conformation. Apart from the restricted rotation around the 3' G, the structure is similar to that of 1,2 GG intrastrand adducts of 1,1/t,t. This steric hindrance may explain the inability of 1,1/c,c complexes to form 1,2 GG intrastrand adducts with sterically more demanding double-stranded DNA.

    Topics: Acetylcysteine; Antineoplastic Agents; Cisplatin; Dinucleoside Phosphates; Guanosine Monophosphate; Hydrogen; Isomerism; Kinetics; Magnetic Resonance Spectroscopy; Nucleic Acid Conformation; Oligodeoxyribonucleotides; Thermodynamics

1997
Interaction of cis-[Pt(NH3)2(H2O)2](NO3)2 with ribose deoxyribose diguanosine phosphates.
    Biochemistry, 1982, Mar-16, Volume: 21, Issue:6

    The three diguanosine phosphates GpG (4 X 10(-4) M), d(GpG) (10(-5) M), and d(pGpG) (10(-5) M) have been reacted with cis-[Pt(NH3)2(H2O)2](NO3)2 (1 Pt/dinucleotide) in water at pH 5.5 and 37 degrees C. In each case a single product is formed. The three complexes have been characterized by proton nuclear magnetic resonance (1H NMR) and circular dichroism (CD) analyses. They are N(7)-N(7) chelates of the metal with an anti-anti configuration of the bases. They present a conformational change upon deprotonation of guanine N(1)H whose pKa is ca. 8.7 (D2O). Their CD spectra, compared to those of the free dinucleotides, exhibit an increase of ellipticity in the 275-nm region, which can be qualitatively related to the characteristic increase reported for platinated DNA and poly(dG) . poly(dC). These results are in favor of the hypothesis of intrastrand cross-linking of adjacent guanines, by the cis-PtII(NH3)2 moiety, after a local denaturation of DNA.

    Topics: Chemical Phenomena; Chemistry; Circular Dichroism; Cisplatin; Deoxyguanine Nucleotides; Dinucleoside Phosphates; DNA; Guanine Nucleotides; Guanosine; Guanosine Monophosphate; Magnetic Resonance Spectroscopy; Nucleic Acid Denaturation; Water

1982