guanosine-diphosphate and norbinaltorphimine

guanosine-diphosphate has been researched along with norbinaltorphimine* in 3 studies

Other Studies

3 other study(ies) available for guanosine-diphosphate and norbinaltorphimine

ArticleYear
Dynorphin activation of kappa opioid receptor reduces neuronal excitability in the paraventricular nucleus of mouse thalamus.
    Neuropharmacology, 2015, Volume: 97

    It has been reported that kappa opioid receptor (KOR) is expressed in the paraventricular nucleus of thalamus (PVT), a brain region associated with arousal, drug reward and stress. Although intra-PVT infusion of KOR agonist was found to inhibit drug-seeking behavior, it is still unclear whether endogenous KOR agonists directly regulate PVT neuron activity. Here, we investigated the effect of the endogenous KOR agonist dynorphin-A (Dyn-A) on the excitability of mouse PVT neurons at different developmental ages. We found Dyn-A strongly inhibited PVT neurons through a direct postsynaptic hyperpolarization. Under voltage-clamp configuration, Dyn-A evoked an obvious outward current in majority of neurons tested in anterior PVT (aPVT) but only in minority of neurons in posterior PVT (pPVT). The Dyn-A current was abolished by KOR antagonist nor-BNI, Ba(2+) and non-hydrolyzable GDP analogue GDP-β-s, indicating that Dyn-A activates KOR and opens G-protein-coupled inwardly rectifying potassium channels in PVT neurons. More interestingly, by comparing Dyn-A currents in aPVT neurons of mice at various ages, we found Dyn-A evoked significant larger current in aPVT neurons from mice around prepuberty and early puberty stage. In addition, KOR activation by Dyn-A didn't produce obvious desensitization, while mu opioid receptor (MOR) activation induced obvious desensitization of mu receptor itself and also heterologous desensitization of KOR in PVT neurons. Together, our findings indicate that Dyn-A activates KOR and inhibits aPVT neurons in mice at various ages especially around puberty, suggesting a possible role of KOR in regulating aPVT-related brain function including stress response and drug-seeking behavior during adolescence.

    Topics: Animals; Barium; Cations; Dose-Response Relationship, Drug; Dynorphins; G Protein-Coupled Inwardly-Rectifying Potassium Channels; Guanosine Diphosphate; Membrane Potentials; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Neurons; Neurotransmitter Agents; Paraventricular Hypothalamic Nucleus; Patch-Clamp Techniques; Receptors, Opioid, kappa; Sexual Maturation; Thionucleotides; Tissue Culture Techniques

2015
Activation of κ opioid receptors increases intrinsic excitability of dentate gyrus granule cells.
    The Journal of physiology, 2011, Jul-15, Volume: 589, Issue:Pt 14

    The dentate gyrus of the hippocampus is thought to control information flow into the rest of the hippocampus. Under pathological conditions, such as epilepsy, this protective feature is circumvented and uninhibited activity flows throughout the hippocampus. Many factors can modulate excitability of the dentate gyrus and ultimately, the hippocampus. It is therefore of critical importance to understand the mechanisms involved in regulating excitability in the dentate gyrus. Dynorphin, the endogenous ligand for the kappa (κ) opioid receptor (KOR), is thought to be involved in neuromodulation in the dentate gyrus. Both dynorphin and its receptor are widely expressed in the dentate gyrus and have been implicated in epilepsy and other complex behaviours such as stress-induced deficits in learning and stress-induced depression-like behaviours. Administration of KOR agonists can prevent both the behavioural and electroencephalographic measures of seizures in several different models of epilepsy. Antagonism of the KORs also prevents stress-induced behaviours. This evidence suggests the KORs as possible therapeutic targets for various pathological conditions. In addition, KOR agonists prevent the induction of LTP. Although there are several mechanisms through which dynorphin could mediate these effects, no studies to date investigated the effects of KOR activation on intrinsic membrane properties and cell excitability. We used whole-cell, patch-clamp recordings from acute mouse hippocampus slices to investigate the effect of KOR activation on dentate gyrus granule cell excitability. The agonist U69,593 (U6, 1 μM) resulted in a lower spike threshold, a decreased latency to first spike, an increased spike half-width, and an overall increase in spike number with current injections ranging from 15 to 45 pA. There was also a reduction in the interspike interval (ISI) both early and late in the spike train, with no change in membrane potential or input resistance. Preincubation of the slice with the selective KOR antagonist, nor-binalthorphimine (BNI, 1 μM) inhibited the effect of U6 on the latency to first spike and spike half-width suggesting that these effects are mediated through KORs. The inclusion of GDP-βS (1 mM) in the recording pipette prevented all of the U6 effects, suggesting that all effects are mediated via a G-protein-dependent mechanism. Inclusion of the A-type K+ current blocker, 4-aminopyridine (4-AP, 5 mM) in the pipette also antagonised the effects of

    Topics: 4-Aminopyridine; Action Potentials; Animals; Benzeneacetamides; Dentate Gyrus; Dynorphins; GTP-Binding Proteins; Guanosine Diphosphate; Male; Mice; Mice, 129 Strain; Naltrexone; Neurons; Patch-Clamp Techniques; Potassium Channels; Pyrrolidines; Receptors, Opioid, kappa; Thionucleotides

2011
Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPgammaS binding and immunohistochemistry.
    British journal of pharmacology, 1999, Volume: 128, Issue:6

    1 Although the ORL1 receptor is clearly located within the spinal cord, the functional signalling mechanism of the ORL1 receptor in the spinal cord has not been clearly documented. The present study was then to investigate the guanine nucleotide binding protein (G-protein) activation mediated through by the ORL1 receptor in the mouse spinal cord, measuring the modulation of guanosine-5'-o-(3-[35S]-thio) triphosphate ([35S]-GTPgammaS) binding by the putative endogenous ligand nociceptin, also referred as orphanin FQ. We also studied the anatomical distribution of nociceptin-like immunoreactivity and nociceptin-stimulated [35S]-GTPgammaS autoradiography in the spinal cord. 2 Immunohistochemical staining of mouse spinal cord sections revealed a dense plexus of nociceptin-like immunoreactive fibres in the superficial layers of the dorsal horn throughout the entire length of the spinal cord. In addition, networks of fibres were seen projecting from the lateral border of the dorsal horn to the lateral grey matter and around the central canal. 3 In vitro [35S]-GTPgammaS autoradiography showed high levels of nociceptin-stimulated [35S]-GTPgammaS binding in the superficial layers of the mouse dorsal horn and around the central canal, corresponding to the areas where nociceptin-like immunoreactive fibres were concentrated. 4 In [35S]-GTPgammaS membrane assay, nociceptin increased [35S]-GTPgammaS binding of mouse spinal cord membranes in a concentration-dependent and saturable manner, affording maximal stimulation of 64.1+/-2.4%. This effect was markedly inhibited by the specific ORL1 receptor antagonist [Phe1Psi (CH2-NH) Gly2] nociceptin (1 - 13) NH2. None of the mu-, delta-, and kappa-opioid and other G-protein-coupled receptor antagonists had a significant effect on basal or nociceptin-stimulated [35S]-GTPgammaS binding. 5 These findings suggest that nociceptin-containing fibres terminate in the superficial layers of the dorsal horn and the central canal and that nociceptin released in these areas may selectively stimulate the ORL1 receptor to activate G-protein. Furthermore, the unique pattern of G-protein activation in the present study provide additional evidence that nociceptin is distinct from the mu-, delta- or kappa-opioid system.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Atropine; Autoradiography; Baclofen; Binding, Competitive; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Haloperidol; Immunohistochemistry; In Vitro Techniques; Male; Membranes; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Propranolol; Receptors, Opioid; Somatostatin; Spinal Cord; Sulfur Radioisotopes; Yohimbine

1999