guanosine-diphosphate has been researched along with inositol-2-4-5-trisphosphate* in 2 studies
2 other study(ies) available for guanosine-diphosphate and inositol-2-4-5-trisphosphate
Article | Year |
---|---|
Modulation of Ins(2,4,5)P3-stimulated Ca2+ mobilization by ins(1,3,4, 5)P4: enhancement by activated G-proteins, and evidence for the involvement of a GAP1 protein, a putative Ins(1,3,4,5)P4 receptor.
We have previously shown that addition of Ins(1,3,4,5)P4 to permeabilized L1210 cells increases the amount of Ca2+ mobilized by a submaximal concentration of Ins(2,4,5)P3, and we suggested that, in doing this, Ins(1,3,4,5)P4 is not working via an InsP3 receptor but indirectly via an InsP4 receptor [Loomis-Husselbee, Cullen, Dreikhausen, Irvine and Dawson (1996) Biochem. J. 314, 811-816]. Here we have investigated whether this effect might be mediated by GAP1(IP4BP), recently identified as a putative receptor for Ins(1,3, 4,5)P4. GAP1(IP4BP) is a protein that interacts with one or more monomeric G-proteins, so we sought evidence for involvement of monomeric G-proteins in the effects of Ins(1,3,4,5)P4 in permeabilized L1210 cells. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) enhanced the effect of Ins(1,3,4,5)P4 on Ins(2,4, 5)P3-stimulated Ca2+ mobilization, but had no effect on the action of Ins(2,4,5)P3 alone. A specific enhancement of only the action of Ins(1,3,4,5)P4 was also seen with GTP[S]-loaded R-Ras or Rap1a (two G-proteins known to interact with GAP1(IP4BP)), whereas H-Ras was inactive at similar concentrations. Guanosine 5'-[beta-thio]diphosphate (GDP[S]) did not alter the action of either Ins(2,4,5)P3 or Ins(1,3,4,5)P4. Finally, the addition of exogenous GAP1(IP4BP), purified from platelets, markedly enhanced the effect of Ins(1,3,4,5)P4, and again, the amount of Ca2+ mobilized by Ins(2,4,5)P3 alone was unaltered. We conclude that the increase in Ins(2,4,5)P3-stimulated Ca2+ mobilization by Ins(1,3,4, 5)P4 may be mediated by GAP1(IP4BP) or a closely related protein (such as GAP1(m)), and if so, the action of the GAP1 is not solely to regulate GTP loading of a G-protein, but rather it acts with a G-protein to cause its effect. Topics: Animals; Calcium; GTP-Binding Proteins; GTPase-Activating Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Inositol Phosphates; Mice; Proteins; ras GTPase-Activating Proteins; ras Proteins; Receptors, Cytoplasmic and Nuclear; Thapsigargin; Thionucleotides; Tumor Cells, Cultured | 1998 |
Slow kinetics of InsP3-induced Ca2+ release: differences between uni- and bi-directional 45Ca2+ fluxes.
The effects of a long-lasting stimulation with inositol 1,4,5-trisphosphate (InsP3) have been studied in monolayers of permeabilized A7r5 cells. When measured under unidirectional 45Ca2+ efflux conditions, i.e. in the presence of 2 microM thapsigargin, an initial fast release was observed which then progressively slowed down into a slow phase which persisted for up to 20 min. When measured under bidirectional 45Ca2+ flux conditions with functional Ca2+ pumps, a transient phase of re-uptake occurred between the initial fast and the subsequent slow release phase. These kinetics are compatible with intrinsic inactivation of the InsP3 receptor. However, this inactivation did not prevent the slow release component. The slow component was not due to the accumulation of an InsP3 metabolite nor to a GTP-dependent translocation of Ca2+ between stores. The slow release phase was more pronounced when the Ca2+ pumps were active than when they were inhibited. This observation is compatible with other findings indicating that the InsP3 receptor is controlled by luminal Ca2+. The decreasing effectiveness of a 20 min lasting InsP3 challenge in mobilizing Ca2+ from less filled stores is most likely due to a progressive depletion of the store and cannot be considered as an experimental artifact caused by a preferential emptying of InsP3-sensitive Ca2+ stores. We conclude that the InsP3 receptor can intrinsically inactivate but that this inactivation is unable to prevent the slow release, which is especially pronounced when Ca2+ pumps are active. Topics: Animals; Aorta; Biological Transport; Calcium; Calcium Channels; Calcium-Transporting ATPases; Cell Membrane Permeability; Cells, Cultured; Cytosol; Dose-Response Relationship, Drug; Guanosine Diphosphate; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Inositol Phosphates; Kinetics; Muscle, Smooth, Vascular; Rats; Receptors, Cytoplasmic and Nuclear; Thionucleotides | 1995 |