guanosine-diphosphate has been researched along with hadacidin* in 5 studies
5 other study(ies) available for guanosine-diphosphate and hadacidin
Article | Year |
---|---|
Crystal structure of fully ligated adenylosuccinate synthetase from Plasmodium falciparum.
In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg2+ and the aspartate analogue, hadacidin at 2 A resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species. Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme. Topics: Adenylosuccinate Synthase; Amino Acid Sequence; Animals; Binding Sites; Crystallography, X-Ray; Dimerization; Glycine; Guanosine Diphosphate; Hydrogen Bonding; Inosine Monophosphate; Magnesium; Models, Molecular; Molecular Sequence Data; Molecular Structure; Plasmodium falciparum; Protein Conformation; Recombinant Proteins; Sequence Homology, Amino Acid | 2004 |
IMP, GTP, and 6-phosphoryl-IMP complexes of recombinant mouse muscle adenylosuccinate synthetase.
Prokaryotes have a single form of adenylosuccinate synthetase that controls the committed step of AMP biosynthesis, but vertebrates have two isozymes of the synthetase. The basic isozyme, which predominates in muscle, participates in the purine nucleotide cycle, has an active site conformation different from that of the Escherichia coli enzyme, and exhibits significant differences in ligand recognition. Crystalline complexes presented here of the recombinant basic isozyme from mouse show the following. GTP alone binds to the active site without inducing a conformational change. IMP in combination with an acetate anion induces major conformational changes and organizes the active site for catalysis. IMP, in the absence of GTP, binds to the GTP pocket of the synthetase. The combination of GTP and IMP results in the formation of a stable complex of 6-phosphoryl-IMP and GDP in the presence or absence of hadacidin. The response of the basic isozyme to GTP alone differs from that of synthetases from plants, and yet the conformation of the mouse basic and E. coli synthetases in their complexes with GDP, 6-phosphoryl-IMP, and hadacidin are nearly identical. Hence, reported differences in ligand recognition among synthetases probably arise from conformational variations observed in partially ligated enzymes. Topics: Adenylosuccinate Synthase; Animals; Binding Sites; Catalysis; Glycine; Guanosine Diphosphate; Guanosine Triphosphate; Hydrogen Bonding; Inosine Monophosphate; Ligands; Mice; Models, Molecular; Muscles; Protein Conformation; Recombinant Proteins | 2002 |
Refined crystal structure of adenylosuccinate synthetase from Escherichia coli complexed with hydantocidin 5'-phosphate, GDP, HPO4(2-), Mg2+, and hadacidin.
A crystal structure of adenylosuccinate synthetase from Escherichia coli, complexed with 5'-phosphate, GDP, HPO4(2-), Mg2+, and hadacidin at 100 K, has been refined to an Rfactor of 0.195 against data to 2.6 A resolution. Bond lengths and angles deviate from expected values by 0.012 A and 1.86 degrees, respectively. Lys 16 and backbone amides 15-17 and 42 interact with the phosphates of GDP, while Ser 414, Asp 333, and backbone amides 331 and 416 interact with the base. Mg2+ is octahedrally coordinated. Oxygen atoms from GDP, phosphate, and hadacidin define the equatorial plane of coordination of the Mg2+, while backbone carbonyl 40 and the side chain of Asp 13 are the apical ligands. HPO4(2-) hydrogen bonds with Lys 16, His 41, backbone amides 13, 40, and 224, and the base moiety of the hydantocidin inhibitor. The carboxylate of hadacidin interacts with Arg 303 and Thr 301; its N-formyl group coordinates to Mg2+, and its hydroxyl group hydrogen bonds with Asp 13. The 5'-phosphate of the hydantocidin inhibitor interacts with Asn 38, Thr 129, and Thr 239 but is approximately 3.5 A from Arg 143 (related by molecular 2-fold symmetry). The base moiety of hydantocidin 5'-phosphate hydrogen bonds to Gln 224 and participates in a hydrogen-bonded network that includes the phosphate molecule, several water molecules, and Asp 13. Hydantocidin 5'-phosphate, GDP, HPO4(2-), and Mg2+ may represent a set of synergistic inhibitors even more effective than the combination of IMP, GDP, NO3-, and Mg2+. Topics: Adenylosuccinate Synthase; Binding Sites; Crystallography, X-Ray; Enzyme Inhibitors; Escherichia coli; Glycine; Guanosine Diphosphate; Herbicides; Hydantoins; Hydrogen Bonding; Magnesium; Models, Molecular; Molecular Structure; Phosphates | 1996 |
Crystal structures of adenylosuccinate synthetase from Escherichia coli complexed with GDP, IMP hadacidin, NO3-, and Mg2+.
Crystal structures of adenylosuccinate synthetase from Esherichia coli complexed with Mg2+, IMP, GDP, NO3- and hadacidin at 298 and 100 K have been refined to R-factors of 0.188 and 0.206 against data to 2.8 A and 2.5 A resolution, respectively. Conformational changes of up to 9 A relative to the unligated enzyme occur in loops that bind to Mg2+, GDP, IMP and hadacidin. Mg2+ binds directly to GDP, NO3-, hadacidin and the protein, but is only five-coordinated. Asp13, which approaches, but does not occupy the sixth coordination site of Mg2+, hydrogen bonds to N1 of IMP. The nitrogen atom of NO3- is approximately 2.7 A from O6 of IMP, reflecting a strong electrostatic interaction between the electron-deficient nitrogen atom and the electron-rich O6. The spatial relationships between GDP, NO3- and Mg2+ suggest an interaction between the beta,gamma-bridging oxygen atom of GTP and Mg2+ in the enzyme-substrate complex. His41 hydrogen bonds to the beta-phosphate group of GDP and approaches bound NO3-. The aldehyde group of hadacidin coordinates to the Mg2+, while its carboxyl group interacts with backbone amide groups 299 to 303 and the side-chain of Arg303. The 5'-phosphate group of IMP interacts with Asn38, Thr129, Thr239 and Arg143 (from a monomer related by 2-fold symmetry). A mechanism is proposed for the two-step reaction governed by the synthetase, in which His41 and Asp13 are essential catalytic side-chains. Topics: Adenylosuccinate Synthase; Binding Sites; Crystallography, X-Ray; Electrochemistry; Escherichia coli; Glycine; Guanosine Diphosphate; Inosine Monophosphate; Magnesium; Models, Molecular; Molecular Sequence Data; Molecular Structure; Nitrates; Protein Conformation | 1996 |
Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase inactivation in vivo.
Glutamine phosphoribosylpyrophosphate amidotransferase is stable in growing cells, but is inactivated in an oxygen-dependent process at various rates in starving or antibiotic-treated cells. On the basis of studies of the purified enzyme, we suggested (D.A. Bernlohr and R.L. Switzer, Biochemistry 20:5675-5681, 1981) that the inactivation in vivo was regulated by substrate stabilization and a competition between stabilizing (AMP) and destabilizing (GMP, GDP, and ADP) nucleotides. This proposal was tested by measuring the intracellular levels of these metabolites under cultural conditions in which the stability of the amidotransferase varied. The results established that the stability of amidotransferase in vivo cannot be explained by the simple interactions observed in vitro. Metabolite levels associated with stability of the enzyme in growing cells did not confer stability under other conditions, such as ammonia starvation or refeeding of glucose-starved cells. The data suggest that a previously unrecognized event, possibly a covalent modification of amidotransferase, is required to mark the enzyme for oxygen-dependent inactivation. Topics: Adenine Nucleotides; Adenosine; Adenosine Monophosphate; Adenosine Triphosphate; Amidophosphoribosyltransferase; Ammonia; Bacillus subtilis; Glucose; Glycine; Guanine Nucleotides; Guanosine Diphosphate; Guanosine Triphosphate; Pentosyltransferases | 1983 |