guanosine-diphosphate has been researched along with cobamamide* in 4 studies
4 other study(ies) available for guanosine-diphosphate and cobamamide
Article | Year |
---|---|
Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases.
Class II ribonucleotide reductases (RNR) catalyze the formation of an essential thiyl radical by homolytic cleavage of the Co-C bond in their adenosylcobalamin (AdoCbl) cofactor. Several mechanisms for the dramatic acceleration of Co-C bond cleavage in AdoCbl-dependent enzymes have been advanced, but no consensus yet exists. We present the structure of the class II RNR from Thermotoga maritima in three complexes: (i) with allosteric effector dTTP, substrate GDP, and AdoCbl; (ii) with dTTP and AdoCbl; (iii) with dTTP, GDP, and adenosine. Comparison of these structures gives the deepest structural insights so far into the mechanism of radical generation and transfer for AdoCbl-dependent RNR. AdoCbl binds to the active site pocket, shielding the substrate, transient 5'-deoxyadenosyl radical and nascent thiyl radical from solution. The e-propionamide side chain of AdoCbl forms hydrogen bonds directly to the α-phosphate group of the substrate. This interaction appears to cause a "locking-in" of the cofactor, and it is the first observation of a direct cofactor-substrate interaction in an AdoCbl-dependent enzyme. The structures support an ordered sequential reaction mechanism with release or relaxation of AdoCbl on each catalytic cycle. A conformational change of the AdoCbl adenosyl ribose is required to allow hydrogen transfer to the catalytic thiol group. Previously proposed mechanisms for radical transfer in B12-dependent enzymes cannot fully explain the transfer in class II RNR, suggesting that it may form a separate class that differs from the well-characterized eliminases and mutases. Topics: Allosteric Regulation; Cobamides; Crystallography, X-Ray; Guanosine Diphosphate; Models, Molecular; Ribonucleotide Reductases; Thermotoga maritima; Thymine Nucleotides | 2010 |
Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation.
Vitamin B(12) (cobalamin, Cbl) is essential to the function of two human enzymes, methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). The conversion of dietary Cbl to its cofactor forms, methyl-Cbl (MeCbl) for MS and adenosyl-Cbl (AdoCbl) for MUT, located in the cytosol and mitochondria, respectively, requires a complex pathway of intracellular processing and trafficking. One of the processing proteins, MMAA (methylmalonic aciduria type A), is implicated in the mitochondrial assembly of AdoCbl into MUT and is defective in children from the cblA complementation group of cobalamin disorders. To characterize the functional interplay between MMAA and MUT, we have crystallized human MMAA in the GDP-bound form and human MUT in the apo, holo, and substrate-bound ternary forms. Structures of both proteins reveal highly conserved domain architecture and catalytic machinery for ligand binding, yet they show substantially different dimeric assembly and interaction, compared with their bacterial counterparts. We show that MMAA exhibits GTPase activity that is modulated by MUT and that the two proteins interact in vitro and in vivo. Formation of a stable MMAA-MUT complex is nucleotide-selective for MMAA (GMPPNP over GDP) and apoenzyme-dependent for MUT. The physiological importance of this interaction is highlighted by a recently identified homoallelic patient mutation of MMAA, G188R, which, we show, retains basal GTPase activity but has abrogated interaction. Together, our data point to a gatekeeping role for MMAA by favoring complex formation with MUT apoenzyme for AdoCbl assembly and releasing the AdoCbl-loaded holoenzyme from the complex, in a GTP-dependent manner. Topics: Child; Child, Preschool; Cobamides; Crystallography, X-Ray; Cytosol; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Membrane Transport Proteins; Metabolism, Inborn Errors; Methylmalonyl-CoA Mutase; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Proteins; Multiprotein Complexes; Mutation, Missense; Protein Structure, Quaternary | 2010 |
The coenzyme b12 analog 5'-deoxyadenosylcobinamide-gdp supports catalysis by methylmalonyl-coa mutase in the absence of trans-ligand coordination.
Methylmalonyl-CoA mutase is an 5'-adenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the rearrangement of methylmalonyl-CoA to succinyl-CoA. The crystal structure of this protein revealed that binding of the cofactor is accompanied by a significant conformational change in which dimethylbenzimidazole, the lower axial ligand to cobalt in solution, is replaced by His(610) donated by the active site. The role of the lower axial ligand in the trillion-fold labilization of the upper axial cobalt-carbon bond has been the subject of enduring debate in the model inorganic literature. In this study, we have used a cofactor analog, 5'deoxyadenosylcobinamide GDP (AdoCbi-GDP), which reconstitutes the enzyme in a "histidine-off" form and which allows us to evaluate the contribution of the lower axial ligand to catalysis. The k(cat) for the enzyme in the presence of AdoCbi-GDP is reduced by a factor of 4 compared with the native cofactor AdoCbl. The overall deuterium isotope effect in the presence of AdoCbi-GDP ((D)V = 7.2 +/- 0.8) is comparable with that observed in the presence of AdoCbl (5.0 +/- 0.6) and indicates that the hydrogen transfer steps in this reaction are not significantly affected by the change in coordination state of the bound cofactor. These surprising results are in marked contrast to the effects ascribed to the corresponding lower axial histidine ligands in the cobalamin-dependent enzymes glutamate mutase and methionine synthase. Topics: Binding Sites; Catalysis; Cobamides; Deuterium; Electron Spin Resonance Spectroscopy; Guanosine Diphosphate; Histidine; Kinetics; Ligands; Methylmalonyl-CoA Mutase; Models, Molecular; Molecular Conformation; Propionibacterium; Recombinant Proteins; Spectrophotometry | 2001 |
Identification of an alternative nucleoside triphosphate: 5'-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum delta H.
Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5'-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea. The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum Delta H (MTH1152; referred to as cobY) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica. NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum Delta H cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY, however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis. Topics: Amino Acid Sequence; Archaeal Proteins; Catalysis; Cobamides; Electrophoresis, Polyacrylamide Gel; Gene Library; Guanosine Diphosphate; Methanobacterium; Molecular Sequence Data; Multienzyme Complexes; Nucleotidyltransferases; Open Reading Frames; Pentosyltransferases; Salmonella enterica | 2000 |