guanosine-diphosphate and 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol

guanosine-diphosphate has been researched along with 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol* in 2 studies

Other Studies

2 other study(ies) available for guanosine-diphosphate and 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol

ArticleYear
Cannabinoid receptor agonist-stimulated [35S]guanosine triphosphate gammaS binding in the brain of C57BL/6 and DBA/2 mice.
    Journal of neuroscience research, 2001, May-15, Volume: 64, Issue:4

    The two inbred strains of mice C57BL/6 (alcohol-preferring) and DBA/2 (alcohol-avoiding) mice have been shown to differ significantly in their preference for alcohol (EtOH). We have previously demonstrated the differences in the density and the affinity of cannabinoid (CB1) receptors in the brains of the two inbred C57BL/6 and DBA/2 mouse strains. In the present study, we investigated the CB1 receptor agonist-stimulated guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding in plasma membranes (PM) from C57BL/6 and DBA/2 mice. The results indicate that the net CP55,940-stimulated [(35)S]GTPgammaS binding was increased with increasing concentrations of CB1 receptor agonists and GDP. The net CB1 receptor agonist (WIN55,212-2 or HU-210 or CP55,940)-stimulated [(35)S]GTPgammaS binding was reduced significantly (-10% to -12%, P < 0.05) in PM from DBA/2 mice; no significant differences were observed in basal [(35)S]GTPgammaS binding among these strains. Nonlinear regression analysis of net CP55,940-stimulated [(35)S]GTPgammaS binding showed that the B(max) of cannabinoid agonist-stimulated binding was significantly reduced (-24%) in DBA/2 mice (B(max) = 12.43 +/- 0.64 for C57BL/6 and 9.46 +/- 0.98 pmol/mg protein for DBA/2; P < 0.05) without any significant changes in the G protein affinity. The pharmacological specificity of CP55,940-stimulated [(35)S]GTPgammaS binding was examined with CB1 receptor antagonist SR141716A, and these studies indicated that CP55,940-stimulated [(35)S]GTPgammaS binding was blocked by SR141716A, with a decrease in the IC(50) values in the PM from the DBA/2 mouse strain. These results suggest that a signal transduction pathway(s) downstream from the CB1 receptor system may play an important role in controlling the voluntary EtOH consumption by these strains of mice.

    Topics: Analgesics; Animals; Brain; Cannabinoids; Cyclohexanols; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Signal Transduction; Species Specificity

2001
Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange.
    Journal of neurochemistry, 1999, Volume: 72, Issue:6

    The hypothesis of these studies is that ligand efficacy at the neuronal CB1 receptor is dependent on the ratio of ligand affinities for the active and inactive states of the receptor. Agonist efficacy was determined in rat cerebellar membranes using agonist-induced guanosine 5'-O-(3-[35S]thiotriphosphate) binding; efficacy was variable among the CB1 agonists examined. Ligand affinities for the active and inactive state of the CB1 receptor were determined by competition with [3H]CP55940 and [3H]SR141716A in the presence of 5'-guanylylimidodiphosphate, respectively. All of the agonists investigated had a higher affinity for the active state than the inactive state. The fraction of CB1 receptors in the active state at a maximally effective concentration was calculated for each agonist and was found to correlate significantly with agonist efficacy. These studies demonstrate that the CB1 receptor of the cerebellum can assume an active conformation in the absence of agonist and that the variability in efficacy among CB1 receptor agonists can be explained by the relative affinities of these ligands for the CB1 receptor in the active and inactive states.

    Topics: Animals; Binding, Competitive; Cannabinoids; Cell Membrane; Cerebellum; Cyclohexanols; Dronabinol; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Kinetics; Ligands; Male; Piperidines; Pyrazoles; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tritium

1999