guanidine and zidovudine

guanidine has been researched along with zidovudine in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (40.00)18.2507
2000's2 (40.00)29.6817
2010's1 (20.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baraldi, PG; Bazzanini, R; Guarneri, M; La Colla, P; Manfredini, S; Marongiu, ME; Pani, A; Simoni, D; Tramontano, E1
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Cha, SH; Endou, H; Fukushima , JI; Goya, T; Kanai, Y; Kobayashi, Y; Sekine, T1
Akazawa, M; Inui, K; Okuda, M; Saito, H; Urakami, Y1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for guanidine and zidovudine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

4 other study(ies) available for guanidine and zidovudine

ArticleYear
Pyrazole-related nucleosides. Synthesis and antiviral/antitumor activity of some substituted pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides.
    Journal of medicinal chemistry, 1992, Mar-06, Volume: 35, Issue:5

    Topics: Animals; Antineoplastic Agents; Antiviral Agents; B-Lymphocytes; Cell Division; Cyclization; Enterovirus; Glycosylation; HIV-1; Humans; Leukemia L1210; Mice; Molecular Structure; Nucleosides; Organosilicon Compounds; Pyrazoles; Silicon; Structure-Activity Relationship; T-Lymphocytes; Tumor Cells, Cultured; Vero Cells

1992
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism

1999
Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney.
    Molecular pharmacology, 2001, Volume: 59, Issue:5

    Topics: Amino Acid Sequence; Animals; Carrier Proteins; Chromosome Mapping; Chromosomes, Human, Pair 11; Cloning, Molecular; Gene Library; Humans; Kidney Tubules, Proximal; Molecular Sequence Data; Oocytes; Organic Anion Transporters, Sodium-Independent; Sequence Homology, Amino Acid; Tissue Distribution; Transfection; Xenopus laevis

2001
cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney.
    Journal of the American Society of Nephrology : JASN, 2002, Volume: 13, Issue:7

    Topics: Alternative Splicing; Amino Acid Sequence; Base Sequence; Cations; Cell Line; Cloning, Molecular; DNA, Complementary; Genetic Variation; Humans; Kidney; Molecular Sequence Data; Organic Cation Transport Proteins; Organic Cation Transporter 2; Tetraethylammonium; Tissue Distribution; Transfection

2002