guanidine and corticosterone

guanidine has been researched along with corticosterone in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (40.00)18.2507
2000's3 (60.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Cha, SH; Endou, H; Fukushima , JI; Goya, T; Kanai, Y; Kobayashi, Y; Sekine, T1
Akhoundova, A; Arndt, P; Bamberg, E; Budiman, T; Gorboulev, V; Koepsell, H; Koppatz, S; Nagel, G; Popp, C; Ulzheimer-Teuber, I; Volk, C1
Göthert, M; Likungu, J; Molderings, GJ1
Bittinger, F; Brockerhoff, P; Deutsch, C; Kilbinger, H; Kirkpatrick, CJ; Roth, E; Wessler, I1

Other Studies

5 other study(ies) available for guanidine and corticosterone

ArticleYear
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism

1999
Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney.
    Molecular pharmacology, 2001, Volume: 59, Issue:5

    Topics: Amino Acid Sequence; Animals; Carrier Proteins; Chromosome Mapping; Chromosomes, Human, Pair 11; Cloning, Molecular; Gene Library; Humans; Kidney Tubules, Proximal; Molecular Sequence Data; Oocytes; Organic Anion Transporters, Sodium-Independent; Sequence Homology, Amino Acid; Tissue Distribution; Transfection; Xenopus laevis

2001
Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1.
    American journal of physiology. Renal physiology, 2001, Volume: 281, Issue:3

    Topics: Animals; Anions; Carrier Proteins; Cations; Cell Line; Cell Membrane; Choline; Cloning, Molecular; Female; Guanidine; Histamine; Humans; In Vitro Techniques; Kidney; Kinetics; Membrane Potentials; Membrane Proteins; Oocytes; Organic Cation Transport Proteins; Organic Cation Transporter 1; Organic Cation Transporter 2; Patch-Clamp Techniques; Quinine; Rats; Recombinant Proteins; Tetraethylammonium; Transfection; Xenopus laevis

2001
Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship.
    Naunyn-Schmiedeberg's archives of pharmacology, 1999, Volume: 360, Issue:2

    Topics: Adrenergic Uptake Inhibitors; Arachidonic Acids; Atrial Function; Corticosterone; Cyclohexanols; Desipramine; Dose-Response Relationship, Drug; Dronabinol; Drug Interactions; Electrophysiology; Endocannabinoids; Excitatory Amino Acid Agonists; Female; Guanidine; Humans; Imidazoles; Imidazoline Receptors; Ligands; Male; Norepinephrine; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Receptors, Presynaptic; Sympathetic Nervous System; Sympathomimetics

1999
Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters.
    British journal of pharmacology, 2001, Volume: 134, Issue:5

    Topics: Acetylcholine; Amiloride; Cimetidine; Corticosterone; DNA, Antisense; Dose-Response Relationship, Drug; Female; Guanidine; Humans; In Vitro Techniques; Norepinephrine; Organic Cation Transport Proteins; Organic Cation Transporter 1; Organic Cation Transporter 2; Piperidines; Placenta; Pregnancy; Procaine; Quinine; Time Factors; Verapamil

2001