Page last updated: 2024-08-22

guaiacylglycerol-beta-guaiacyl ether and lignin

guaiacylglycerol-beta-guaiacyl ether has been researched along with lignin in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19902 (16.67)18.7374
1990's0 (0.00)18.2507
2000's4 (33.33)29.6817
2010's4 (33.33)24.3611
2020's2 (16.67)2.80

Authors

AuthorsStudies
Odier, E; Rolando, C1
Barrelle, M; Beguin, C; Dardas, A; Gamba, D; Hauteville, M; Pelmont, J; Romdhane, M1
Ikeda, S; Kajita, S; Katayama, Y; Nakamura, M; Otsuka, Y; Sonoki, T1
Besombes, S; Mazeau, K1
Brunow, G; Henriksson, G; Holmgren, A; Ralph, J; Zhang, L1
Adschiri, T; Ohara, S; Okuda, K; Takami, S; Umetsu, M1
Guebitz, GM; Heathcote, C; Jury, S; Kandelbauer, A; Kudanga, T; Nyanhongo, GS; Prasetyo, EN; Sipilä, J; Weber, H; Widsten, P1
Dellas, N; Oakeshott, JG; Palamuru, S; Pandey, G; Pearce, SL; Warden, AC1
Hasegawa, R; Hatada, Y; Nishi, S; Ohta, Y1
Gao, MY; Li, H; Li, HY; Li, M; Li, ZZ; Yang, J1
Ju, Z; Sale, KL; Simmons, BA; Sun, N; Tan, X; Xiao, W; Yao, X1
Hayashi, T; Hosoya, T; Miyafuji, H1

Other Studies

12 other study(ies) available for guaiacylglycerol-beta-guaiacyl ether and lignin

ArticleYear
Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by Pseudomonas cepacia 122.
    Biochimie, 1985, Volume: 67, Issue:2

    Topics: Benzaldehydes; Chromatography, High Pressure Liquid; Guaiacol; Guaifenesin; Lignin; Models, Chemical; Oxygen Consumption; Pseudomonas; Spectrophotometry, Ultraviolet; Vanillic Acid

1985
A new bacterial dehydrogenase oxidizing the lignin model compound guaiacylglycerol beta-O-4-guaiacyl ether.
    Biochimie, 1985, Volume: 67, Issue:9

    Topics: Bacteria; Guaifenesin; Indicators and Reagents; Kinetics; Lignin; Magnetic Resonance Spectroscopy; NAD; Oxidation-Reduction; Soil Microbiology; Spectrophotometry, Infrared; Substrate Specificity; Sugar Alcohol Dehydrogenases

1985
Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol beta-aryl ether linkages.
    European journal of biochemistry, 2003, Volume: 270, Issue:11

    Topics: Catalysis; Cell Death; Cell Membrane; Classification; DNA, Ribosomal; Electrophoresis, Polyacrylamide Gel; Fungi; Guaifenesin; Hydrolysis; Hymecromone; Indicators and Reagents; Lignin; Mass Spectrometry; Microscopy, Fluorescence; Models, Chemical; Phylogeny; Substrate Specificity; Time Factors

2003
The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl beta-O-4 dimer onto a Ibeta cellulose whisker.
    Plant physiology and biochemistry : PPB, 2005, Volume: 43, Issue:3

    Topics: Adsorption; Carbohydrate Conformation; Cell Wall; Cellulose; Guaifenesin; Hydrogen Bonding; Lignin; Models, Molecular; Plants

2005
Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins.
    Organic & biomolecular chemistry, 2006, Sep-21, Volume: 4, Issue:18

    Topics: Benzene; Chromatography, Gas; Electrons; Guaifenesin; Hydrogenation; Indolequinones; Lignin; Nuclear Magnetic Resonance, Biomolecular; Oxidation-Reduction; Polymers

2006
Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Bioresource technology, 2008, Volume: 99, Issue:6

    Topics: Biotechnology; Chromatography, Gas; Cresols; Fermentation; Glycerol; Guaiacol; Guaifenesin; Lignin; Mass Spectrometry; Models, Chemical; Temperature; Time Factors; Water

2008
Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity.
    Bioresource technology, 2010, Volume: 101, Issue:8

    Topics: Chromatography, High Pressure Liquid; Fagus; Guaifenesin; Hydrophobic and Hydrophilic Interactions; Laccase; Lignin; Magnetic Resonance Spectroscopy; Mass Spectrometry; Molecular Structure; Phenols; Photoelectron Spectroscopy; Surface Properties; Wood

2010
Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol-β-guaiacyl ether stereoisomers.
    Applied and environmental microbiology, 2015, Volume: 81, Issue:23

    Topics: Bacterial Proteins; Catalysis; Guaifenesin; Kinetics; Lignin; Oxidation-Reduction; Phylogeny; Sphingomonadaceae; Stereoisomerism; Sugar Alcohol Dehydrogenases

2015
Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers.
    Scientific reports, 2015, Oct-19, Volume: 5

    Topics: Bacterial Proteins; Catalysis; Enzymes; Gene Expression Regulation, Bacterial; Gene Order; Genetic Loci; Glutathione Transferase; Guaifenesin; Lignin; Sphingomonadaceae; Stereoisomerism

2015
Bacillus amyloliquefaciens CotA degradation of the lignin model compound guaiacylglycerol-β-guaiacyl ether.
    Letters in applied microbiology, 2018, Volume: 67, Issue:5

    Topics: Bacillus amyloliquefaciens; Escherichia coli; Guaiacol; Guaifenesin; Laccase; Lignin; Mass Spectrometry; Oxidation-Reduction

2018
Theoretical study on the microscopic mechanism of lignin solubilization in Keggin-type polyoxometalate ionic liquids.
    Physical chemistry chemical physics : PCCP, 2020, Feb-07, Volume: 22, Issue:5

    Topics: Guaifenesin; Hydrogen Bonding; Ionic Liquids; Lignin; Molecular Dynamics Simulation; Quantum Theory; Solubility; Static Electricity; Tungsten Compounds

2020
Vanillin Production Pathways in Alkaline Nitrobenzene Oxidation of Guaiacylglycerol-β-guaiacyl Ether.
    Journal of agricultural and food chemistry, 2023, Jul-05, Volume: 71, Issue:26

    Topics: Guaifenesin; Lignin; Nitrobenzenes

2023