granisetron and verapamil

granisetron has been researched along with verapamil in 15 studies

Research

Studies (15)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (6.67)18.2507
2000's9 (60.00)29.6817
2010's4 (26.67)24.3611
2020's1 (6.67)2.80

Authors

AuthorsStudies
Gunthorpe, MJ; Hargreaves, AC; Lummis, SC; Taylor, CW1
Bíró, T; Bugovics, G; Maksay, G1
Bouwmeester, H; Gerssen, A; Nielen, MWF; Santbergen, MJC; van der Zande, M1
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M1
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA1
Nagashima, R; Nishikawa, T; Tobita, M1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Lombardo, F; Obach, RS; Waters, NJ1
He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Sun, Y; Yan, Z1
Caron, G; Ermondi, G; Visentin, S1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Campillo, NE; Guerra, A; Páez, JA1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Sen, S; Sinha, N1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for granisetron and verapamil

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

14 other study(ies) available for granisetron and verapamil

ArticleYear
Direct inhibition of 5-hydroxytryptamine3 receptors by antagonists of L-type Ca2+ channels.
    Molecular pharmacology, 1996, Volume: 50, Issue:5

    Topics: Biguanides; Binding, Competitive; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Electrophysiology; Fura-2; Granisetron; Humans; Kidney; Kinetics; Microscopy, Video; Neuroblastoma; Nimodipine; Radioligand Assay; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin Antagonists; Serotonin Receptor Agonists; Tritium; Tumor Cells, Cultured; Verapamil

1996
Allosteric modulation of 5-HT3 serotonin receptors.
    European journal of pharmacology, 2005, May-02, Volume: 514, Issue:1

    Topics: Adrenergic alpha-Antagonists; Algorithms; Allosteric Regulation; Animals; Binding, Competitive; Cell Line, Tumor; Dose-Response Relationship, Drug; Granisetron; Hybrid Cells; Kinetics; Male; Mice; Models, Biological; Piperidines; Rats; Rats, Wistar; Receptors, Serotonin, 5-HT3; Serotonin; Serotonin Agents; Tritium; Verapamil

2005
Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies.
    Analytical and bioanalytical chemistry, 2020, Volume: 412, Issue:5

    Topics: Administration, Oral; Biological Availability; Biotransformation; Caco-2 Cells; Chromatography, Liquid; Ergotamine; Granisetron; HT29 Cells; Humans; In Vitro Techniques; Intestinal Mucosa; Lab-On-A-Chip Devices; Limit of Detection; Models, Biological; Permeability; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Verapamil

2020
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
    Journal of medicinal chemistry, 2002, Aug-29, Volume: 45, Issue:18

    Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2002
A two-state homology model of the hERG K+ channel: application to ligand binding.
    Bioorganic & medicinal chemistry letters, 2005, Mar-15, Volume: 15, Issue:6

    Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation

2005
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:4

    Topics: Computational Biology; Drug Discovery; Hepatocytes; Humans; Hydrogen-Ion Concentration; Liver; Metabolic Clearance Rate; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship; Sensitivity and Specificity; Software

2009
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:5

    Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship

2009
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011