gramicidin-a and triphenylmethylphosphonium

gramicidin-a has been researched along with triphenylmethylphosphonium* in 3 studies

Other Studies

3 other study(ies) available for gramicidin-a and triphenylmethylphosphonium

ArticleYear
Lipophilic cations: a group of model substrates for the multidrug-resistance transporter.
    Biochemistry, 1992, Feb-25, Volume: 31, Issue:7

    The possibility that simple lipophilic cations such as tetraphenylphosphonium (TPA+), triphenylmethylphosphonium (TPMP+), and diphenyldimethylphosphonium (DDP+) are substrates for the multidrug-resistance transport protein, P-glycoprotein, was tested. Hamster cells transfected with and overexpressing mouse mdr1 or mouse mdr3 exhibit high levels of resistance to TPP+ and TPA+ (20-fold) and somewhat lower levels of resistance to TPMP+ and DDP+ (3-12-fold). Transfected cell clones expressing mdr1 or mdr3 mutants with decreased activity against drugs of the MDR spectrum (e.g., Vinca alkaloids and anthracyclines) also show reduced resistance to lipophilic cations. Studies with radiolabeled TPP+ and TPA+ demonstrate that increased resistance to cytotoxic concentrations of these lipophilic cations is correlated quantitatively with a decrease in intracellular accumulation in mdr1- and mdr3-transfected cells. This decreased intracellular accumulation is shown to be strictly dependent on intact intracellular nucleotide triphosphate pools and is reversed by verapamil, a known competitive inhibitor of P-glycoprotein. Taken together, these results demonstrate that lipophilic cations are a new class of substrates for P-glycoprotein and can be used to study its mechanism of action in homologous and heterologous systems.

    Topics: Adenosine Triphosphate; Animals; Arsenicals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cations; Cell Survival; CHO Cells; Cricetinae; Electrophoresis, Polyacrylamide Gel; Gramicidin; Membrane Glycoproteins; Mutation; Onium Compounds; Organophosphorus Compounds; Substrate Specificity; Trityl Compounds; Verapamil

1992
Tetradecanoylphorbol acetate and terbutaline stimulate surfactant secretion in alveolar type II cells without changing the membrane potential.
    Biochimica et biophysica acta, 1987, Sep-03, Volume: 902, Issue:3

    Alveolar type II cells were isolated from adult rat lungs after tissue dissociation with elastase. The effect of known secretagogues on transmembrane potential was examined in freshly isolated cells (day 0 cells) and in cells after one day of primary culture (day 1 cells). Freshly isolated type II cells were incubated with 3,3'-dipentyloxacarbocyanine (di-O-C5(3)) or 3,3'-dipropylthiadicarbocyanine (di-S-C3(5)), dyes whose intracellular fluorescence intensity is a direct function of the cellular transmembrane potential. Fluorescence was continuously recorded by fluorescence spectrophotometry. Type II cells rapidly incorporated the dyes, and the addition of gramicidin (1 microgram/ml) depolarized the cells as indicated by a change in fluorescence. Neither 12-O-tetradecanoylphorbol 13-acetate (TPA) nor terbutaline plus 3-isobutyl-1-methylxanthine (IBMX), which stimulate surfactant secretion from isolated alveolar type II cells, changed the transmembrane potential. The lipophilic cation triphenylmethylphosphonium (TPMP+) was used to quantitate the transmembrane potential of type II cells cultured for one day. Addition of TPA or terbutaline plus IBMX induced surfactant secretion but did not alter the transmembrane potential. To study further the relationship of secretion to the transmembrane potential, secretion was also determined in the presence of high extracellular potassium which depolarizes the cells and in the presence of choline in place of sodium. High potassium enhanced the basal secretion of phosphatidylcholine from 1.8% to 3.4% (P less than 0.01, n = 7). Substitution of sodium chloride by choline chloride had no effect on basal secretion but enhanced TPA-induced secretion (P less than 0.01). We conclude that high extracellular potassium induces membrane depolarization and stimulates surfactant secretion, but TPA or terbutaline plus IBMX stimulates secretion without detectable membrane depolarization and stimulation of secretion by TPA does not require extracellular sodium.

    Topics: Animals; Calcium Chloride; Gramicidin; Membrane Potentials; Onium Compounds; Potassium Chloride; Pulmonary Alveoli; Pulmonary Surfactants; Rats; Secretory Rate; Terbutaline; Tetradecanoylphorbol Acetate; Trityl Compounds

1987
Passive uptake of acetylcholine and other organic cations by synaptic vesicles from Torpedo electric organ.
    Biochemistry, 1980, Sep-02, Volume: 19, Issue:18

    Topics: Acetylcholine; Animals; Biological Transport; Carbachol; Cations; Electric Organ; Fishes; Gramicidin; Kinetics; Onium Compounds; Spectrometry, Fluorescence; Synaptic Vesicles; Trityl Compounds

1980