gramicidin-a has been researched along with decane* in 4 studies
4 other study(ies) available for gramicidin-a and decane
Article | Year |
---|---|
Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins.
It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 microm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane, we avoid low molecular weight solvents such as chloroform and toluene, which are strong protein denaturants. The membranes show a low ionic conductance and a long lifetime at room temperature. Contrast phase microscopy shows the presence of a polymer region delimited by a Plateau-Gibbs border similar to what is observed in black lipid membranes. The ion-channel gramicidin A was successfully incorporated into the membrane in a functional form. Topics: Alkanes; Biomimetic Materials; Biomimetics; Electric Capacitance; Electric Conductivity; Gramicidin; Ion Channels; Membrane Proteins; Membranes, Artificial; Polymers; Protein Array Analysis; Solvents; Temperature | 2009 |
On the origin of closing flickers in gramicidin channels: a new hypothesis.
The submillisecond closing events (flickers) and the single channel conductances to protons (g(H)) were studied in native gramicidin A (gA) and in the SS and RR diastereoisomers of dioxolane-linked gA channels in planar bilayers. Bilayers were formed from glycerylmonooleate (GMO) in various solvents. In GMO/decane (thick) bilayers, the largest flicker frequency occurred in the SS channel (39 s(-1)), followed by the RR (4 s(-1)) and native gA channels (3 s(-1)). These frequencies were attenuated in GMO/squalene (thin) bilayers by 100-, 30-, and 70-fold in the SS, RR, and native gA channels, respectively. In thin bilayers, the average burst duration of native gA channels was 30-fold longer than in thick bilayers. The RR dioxolane-linked gA dimer "inactivated" in GMO/decane but not in squalene-containing bilayers. The mean closed time of flickers (approximately 0.12 ms) was essentially the same in various gA channels. In thin bilayers, g(H) values were larger by approximately 10% (SS), 30% (RR), and 20% (native gA) in relation to thick bilayers. It is concluded that flickers are not related to pre-dissociation or dissociation states of gA monomers, and do not seem to be caused by intrinsic conformational changes of channel proteins. It is proposed that flickers are caused by undulations of the bilayer that obliterate the openings of gA channels. Differences between flicker frequencies in various gA channels are likely to result from variations in channel geometries at the bilayer/channel interface. The smaller g(H) in thick bilayers suggests that the deformation of these bilayers around the gA channel creates a diffusional pathway next to the mouths of the channel that is longer and more restrictive than in thin GMO bilayers. A possible molecular interpretation for these effects is attempted. Topics: Alkanes; Anti-Bacterial Agents; Electrophysiology; Gramicidin; Lipid Bilayers; Models, Biological; Protons; Squalene; Time Factors | 2002 |
Gramicidin channels in phospholipid bilayers with unsaturated acyl chains.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers. Topics: Alkanes; Amino Acid Sequence; Fatty Acids, Unsaturated; Gramicidin; Ion Channels; Lipid Bilayers; Models, Biological; Models, Structural; Molecular Sequence Data; Phosphatidylcholines; Protein Structure, Secondary; Structure-Activity Relationship | 1997 |
Brief closures of gramicidin A channels in lipid bilayer membranes.
Brief closures, so called flickers, gramicidin A channels were observed for glycerol monooleate/n-decane membranes for cesium chloride and hydrochloric acid solutions. The flickers, similar in nature to the flickers observed for physiological channels, were of the order of 1 ms and the interval between flickers was of the order of 50 ms. The flicker-duration and interval between flickers both decrease with voltage. The field dependence of the flickers is consistent with the hypothesis that the membrane forms a dimple when accomodating a dimer in the membrane and that the monomers, on breaking up, are associated over displacements of the order of 2 nm. For similar measurements for glycerol monoleate/hexadecane membranes only rare occurrences of flickers were observed. It is suggested that the flicker phenomenon is governed by the physical and chemical properties of the membrane and the influence of membrane thickness and interfacial free energy is emphasized. Topics: Alkanes; Glycerides; Gramicidin; Ion Channels; Kinetics; Lipid Bilayers; Models, Biological; Time Factors | 1986 |