gramicidin-a has been researched along with 9-anthroic-acid* in 2 studies
2 other study(ies) available for gramicidin-a and 9-anthroic-acid
Article | Year |
---|---|
Transient Ca2+-activated Cl-currents with endothelin in isolated arteriolar smooth muscle cells of the choroid.
To characterize the effects of endothelin (ET)-1 on the Ca2+-activated Cl- conductance of choroidal arteriolar smooth muscle.. Microvascular smooth muscle cells were enzymatically isolated from choroidal arterioles from the eyes of freshly killed rabbits. Cells were voltage-clamped at -60 mV using the whole-cell perforated patch-clamp technique. Internal pipette solutions were K+ based and contained amphotericin B (200 microg/ml). The cells were bathed in a 20 mM tetraethyl-ammonium solution to block outward K+ currents.. Within 2 to 5 seconds of adding ET-1 (10 nM), inward current pulses were generated at a frequency of around 1 Hz. These evoked transient inward currents were blocked by niflumic acid (10 microM) or anthracene-9-carboxylic acid (1 mM). They were increased 2.4+/-0.1-fold when Cl- was replaced by I in the bathing medium and lost within 4 minutes when external Cl- was reduced from 151.6 to 20 mM. The reversal potential was -1+/-2 mV with 135 mM Cl- in the recording pipette and with 54 mM Cl it was -18+/-4 mV. When gramicidin D (100 microg/ml), which maintains [Cl-]i, was used instead of amphotericin B, the reversal potential was -18+/-1 mV. Ca2+ release by caffeine (10 mM) produced a single transient inward current. Endothelin-evoked transient inward currents were slowly reduced and eventually abolished in Ca2+-free solution (approximately 2 to 3 minutes) and were eliminated after approximately 30 seconds by the sarcoplasmic reticulum Ca2+-uptake inhibitor cyclopiazonic acid (5 microM). The ET(A) receptor antagonist BQ123 (1 microM) prevented an effect by endothelin but did not inhibit the current oscillations once they had been triggered.. In choroidal arteriolar smooth muscle ET-1 evokes transient inward Ca2+-activated Cl- currents induced through the cyclical release and re-uptake of Ca2+ from intracellular stores after ET(A) receptor stimulation. Topics: Amphotericin B; Animals; Anthracenes; Arterioles; Calcium; Chloride Channels; Chlorides; Choroid; Electrophysiology; Endothelin Receptor Antagonists; Endothelin-1; Female; Gramicidin; Male; Membrane Potentials; Muscle, Smooth, Vascular; Niflumic Acid; Patch-Clamp Techniques; Peptides, Cyclic; Rabbits; Receptor, Endothelin A; Receptors, Endothelin | 2000 |
Chloride-sensitive nature of the histamine-induced Ca2+ entry in cultured human aortic endothelial cells.
1. Whole-cell currents and intracellular Ca2+ concentration ([Ca2+]i) were recorded in cultured human aortic endothelial cells (HAECs) to study the mechanisms underlying Cl--sensitive Ca2+ entry. 2. In the absence of histamine the membrane potential ranged between -90 and +5 mV and showed bimodal distribution with peaks at -17.8 and -67.5 mV. 3. Histamine (1-100 microM) activated an outward current, followed by a sustained inward current at -50 mV. The reversal potential (Vrev) was more negative than -60 mV for the initial outward current, and approximately -30 mV for the sustained inward current with normal Tyrode solution and internal solution containing 30 mM Cl-. 4. Vrev of the sustained inward current was hardly affected by varying the external concentrations of K+, Na+ and Ca2+, but was greatly changed by varying the external Cl- concentration ([Cl-]o). The relationship between Vrev and log[Cl-]o showed a slope of -44.8 mV per tenfold increase of [Cl-]o. 5. The Cl- channel blockers 9-anthracene carboxylic acid (1 mM), N-phenylanthranilic acid (0.1 mM) and niflumic acid (0.1 mM) all depressed the histamine-induced inward current. The non-selective cation channel blocker Gd3+ (10 microM) was without effect on the current. 6. In the absence of histamine, [Ca2+]i was not affected by varying the membrane potential. During the continuous presence of histamine, however, hyperpolarization increased and depolarization decreased [Ca2+]i, indicating that Ca2+ entry through the plasma membrane was activated by histamine. 7. Vrev of the histamine-induced Cl- current, measured by the gramicidin-perforated patch clamp method, was -28.4 +/- 6.6 mV (n = 8), which gave an intracellular Cl- concentration of approximately 34 mM. Under the current clamp condition, the membrane potential varied from cell to cell in the control, but application of histamine induced either depolarization or hyperpolarization, depending on the membrane potential before histamine application, and the membrane potential became stable near the equilibrium potential for Cl-. 8. We conclude that the histamine-induced inward current is carried mainly by Cl-. Although Ca2+ entry was also activated, we consider that its amplitude was too small to be resolved by the patch clamp method. The Cl- current may play a functional role in the sustained [Ca2+]i elevation by providing a constant driving force for Ca2+ entry in the presence of histamine. Topics: Anthracenes; Anti-Bacterial Agents; Anti-Inflammatory Agents, Non-Steroidal; Aorta; Calcium; Calcium Channel Blockers; Calcium Channels; Cells, Cultured; Chelating Agents; Chloride Channels; Chlorides; Egtazic Acid; Endothelium, Vascular; Gramicidin; Histamine; Humans; Ion Channel Gating; Membrane Potentials; Niflumic Acid; ortho-Aminobenzoates; Patch-Clamp Techniques; Sodium | 1998 |