gramicidin-a has been researched along with 1-4-dioxane* in 3 studies
3 other study(ies) available for gramicidin-a and 1-4-dioxane
Article | Year |
---|---|
Water: foldase activity in catalyzing polypeptide conformational rearrangements.
Polypeptide conformer interconversion in a low dielectric environment is shown to be highly dependent on water concentration. Water increases this rate by 10(3), apparently by catalyzing hydrogen bond exchange, and thereby presenting functional properties analogous to that of a foldase. This catalytic effect is demonstrated on the interconversion of a parallel gramicidin dimer into an antiparallel dimer. A Hill coefficient of 6.5 is observed, illustrating the highly cooperative nature of the process. Protein folding in nonpolar environs, such as the hydrophobic core of a protein or the hydrophobic domain of a lipid bilayer, may be contingent on and rate-limited by the scarcity of water. Topics: Dioxanes; Gramicidin; Kinetics; Models, Chemical; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Peptides; Protein Conformation; Protein Folding; Water | 1999 |
Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.
Gramicidin A incorporated into SDS (sodium dodecyl sulfate) micelles exists as a right-handed, N-to-N-terminal beta 6.3 helical dimer [Lomize, A. L., Orechov, V. Yu., & Arseniev, A.S. (1992) Bioorg. Khim. 18, 182-189]. In the incorporation procedure to achieve the ion channel state of gramicidin A in SDS micelles, trifluoroethanol (TFE) is used to solubilize the hydrophobic peptide before addition to the aqueous/micelle solution. The conformational transition of gramicidin A to form ion channels in SDS micelles, i.e., in TFE and 10% TFE/water, has been investigated using 2D NMR and CD spectroscopy. In neat TFE, gramicidin A was found to be monomeric and may possibly exist in an equilibrium of rapidly interconverting conformers of at least three different forms believed to be left- and/or right-handed alpha and beta 4.4 helices. It was found that the interconversion between these conformers was slowed down in 55% TFE as evident by the observation of at least three different sets of d alpha N COSY peaks although CD gave a net spectrum similar to that in neat TFE. In 10% TFE gramicidin A spontaneously forms a precipitate. The precipitated species were isolated and solubilized in dioxane where gramicidin conformers undergo very slow interconversion and could be characterized by NMR. At least seven different gramicidin A conformations were found in 10% TFE. Four of thes are the same types of double helices as previously found in ethanol (i.e., a symmetric left-handed parallel beta 5.6 double helix, an unsymmetric left-handed parallel beta 5.6 double helix, a symmetric left-handed antiparallel beta 5.6 double helix, a symmetric right-handed parallel beta 5.6 double helix); the fifth is possibly a symmetric right-handed antiparallel beta 5.6 double helix. There is also evidence for the presence of at least one form of monomeric species. Previous observation on the solvent history dependence in the ease of channel incorporation may be explained by the presence of several different folding pathways to channel formation. To test this proposal, the conformation of gramicidin A in 10% DMSO and 10% methanol was studied. In the former environment, the major form was a random coil with a minor population of double-stranded helices, while in the latter, NMR spectra indicate the presence of the same double-helical conformers as found in neat methanol. Topics: Amino Acid Sequence; Circular Dichroism; Dioxanes; Gramicidin; Ion Channels; Magnetic Resonance Spectroscopy; Membranes, Artificial; Methanol; Micelles; Molecular Sequence Data; Protein Conformation; Protein Folding; Protein Structure, Secondary; Solvents; Trifluoroethanol; Water | 1994 |
Structure of an isolated gramicidin A double helical species by high-resolution nuclear magnetic resonance.
A conformational species of gramicidin A has been isolated in dioxane by high pressure liquid chromatography and characterized by circular dichroism and two-dimensional proton nuclear magnetic resonance. Double-quantum filtered two-dimensional correlation spectroscopy, two-dimensional homonuclear Hartman Hahn spectroscopy and two-dimensional nuclear Overhauser effect spectra at 500 MHz were used to obtain virtually complete proton assignments and produce 192 distance constraints. Protocols to determine the state of aggregation, monomer-specific assignment of nuclear Overhauser enhancement values, hydrogen bonding pattern and helix handedness are described. A distance geometry/simulated annealing routine was used to generate well-defined backbone and side-chain structures. The species isolated is a right-handed intertwined double helix, with approximately 5.7 residues per turn. Unique values for helical dimensions are also specified. Topics: Amino Acid Sequence; Circular Dichroism; Dioxanes; Gramicidin; Hydrogen Bonding; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Sequence Data; Protein Conformation; Solvents | 1992 |