glycyrrhetinic acid has been researched along with asiatic acid in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (25.00) | 29.6817 |
2010's | 5 (62.50) | 24.3611 |
2020's | 1 (12.50) | 2.80 |
Authors | Studies |
---|---|
Alexacou, KM; Cheng, K; Gimisis, T; Hao, J; Hayes, JM; Leonidas, DD; Liu, J; Ni, P; Oikonomakos, NG; Sun, H; Wen, X; Zhang, L; Zhang, P; Zographos, SE | 1 |
Hong, D; Hu, LH; Li, J; Li, JY; Shen, Q; Shi, L; Zhang, W; Zhang, YN | 1 |
El-Kabbani, O; Endo, S; Hara, A; Iinuma, M; Matsunaga, T; Soda, M; Tajima, K; Takemura, M; Zhao, HT | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Feng, B; Hou, XY; Shi, JJ; Zhang, CL; Zhao, CH; Zhao, LX | 1 |
Dong, YS; Sun, WL; Wen, C; Xing, Y; Xiu, ZL; Yu, XX; Zhang, BW | 1 |
Fukushima, EO; Muranaka, T; Nomura, Y; Vo, NNQ | 1 |
Chen, C; Cheng, K; Dai, L; Hu, K; Li, H; Liu, L; Sun, H; Wen, X; Xu, Q; Yuan, H | 1 |
8 other study(ies) available for glycyrrhetinic acid and asiatic acid
Article | Year |
---|---|
Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure-activity relationships, and X-ray crystallographic studies.
Topics: Adenosine Monophosphate; Allosteric Site; Animals; Binding Sites; Crystallography, X-Ray; Glycogen Phosphorylase; Hypoglycemic Agents; Kinetics; Models, Molecular; Muscles; Oleanolic Acid; Pentacyclic Triterpenes; Protein Binding; Protein Conformation; Rabbits; Stereoisomerism; Structure-Activity Relationship; Triterpenes | 2008 |
Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1B with cellular activities.
Topics: Animals; Cell Line; CHO Cells; Cricetinae; Cricetulus; Diabetes Mellitus; Drugs, Chinese Herbal; Enzyme Inhibitors; Humans; Insulin; Obesity; Oleanolic Acid; Phosphorylation; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Receptor, Insulin; Structure-Activity Relationship; T-Lymphocytes | 2008 |
Selective inhibition of the tumor marker aldo-keto reductase family member 1B10 by oleanolic acid.
Topics: Aldehyde Reductase; Aldo-Keto Reductases; Antineoplastic Agents, Phytogenic; Drug Resistance, Neoplasm; HeLa Cells; HT29 Cells; Humans; Mitomycin; Models, Molecular; Molecular Structure; Mutation; Oleanolic Acid; Pentacyclic Triterpenes | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Design, synthesis, and biofunctional evaluation of novel pentacyclic triterpenes bearing O-[4-(1-piperazinyl)-4-oxo-butyryl moiety as antiproliferative agents.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Design; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Pentacyclic Triterpenes; Piperazines; Structure-Activity Relationship | 2015 |
Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.
Topics: Acarbose; alpha-Amylases; alpha-Glucosidases; Drug Synergism; Inhibitory Concentration 50; Kinetics; Oleanolic Acid; Pentacyclic Triterpenes; Structure-Activity Relationship; Triterpenes | 2017 |
Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes.
Topics: Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Humans; Lipoxygenase Inhibitors; Pentacyclic Triterpenes; Structure-Activity Relationship | 2019 |
Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid.
Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Dose-Response Relationship, Drug; Glycyrrhizic Acid; Humans; Interleukin-6; Liver; Macrophages; Male; Medicine, Chinese Traditional; Mice; Mice, Inbred BALB C; Oleanolic Acid; Pentacyclic Triterpenes; Phosphorylation; Sapogenins; Saponins; Tumor Necrosis Factor-alpha | 2021 |