glycyl-alanyl-phenylalanine and glycylleucine

glycyl-alanyl-phenylalanine has been researched along with glycylleucine* in 2 studies

Other Studies

2 other study(ies) available for glycyl-alanyl-phenylalanine and glycylleucine

ArticleYear
Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Biochemistry, 2005, Aug-02, Volume: 44, Issue:30

    Bacterial dd-peptidases, the targets of beta-lactam antibiotics, are believed to catalyze d-alanyl-d-alanine carboxypeptidase and transpeptidase reactions in vivo. To date, however, there have been few concerted attempts to explore the kinetic and thermodynamic specificities of the active sites of these enzymes. We have shown that the peptidoglycan-mimetic peptide, glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl-d-alanine, 1, is a very specific and reactive carboxypeptidase substrate of the Streptomyces R61 dd-peptidase [Anderson, J. W., and Pratt, R. F. (2000) Biochemistry 39, 12200-12209]. In the present paper, we explore the transpeptidation reactions of this substrate, where the enzyme catalyzes transfer of the glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl moiety to amines. These reactions are believed to occur through capture of an acyl-enzyme intermediate by amines rather than water. Experiments show that effective acyl acceptors require a carboxylate group and thus are amino acids and peptides. d(but not l)-amino acids, analogues of the leaving group of 1, are good acceptors. The effectiveness of d-alanine as an acceptor increases with pH, suggesting that the bound and reactive form of an amino acid acceptor is the free amine. Certain glycyl-l(but not d)-amino acids, such as glycyl-l-alanine and glycyl-l-phenylalanine, are also good acceptors. These molecules may resemble the N-terminus of the Streptomyces stem peptides that, presumably, are the acceptors in vivo. The acyl acceptor binding site therefore demonstrates a dual specificity. That d-alanyl-l-alanine shows little activity as an acceptor suggested that, on binding of acceptors to the enzyme, the carboxylate of d-amino acids does not overlap with the peptide carbonyl group of glycyl-l-amino acids. Molecular modeling of transpeptidation tetrahedral intermediates and products demonstrated the likely structural bases for the stereospecificity of the acceptors and the nature of the dual function acceptor binding site. For both groups of acceptors, the terminal carboxylate appeared to be anchored at the active site by interaction with Arg 285 and Thr 299.

    Topics: Catalysis; Dipeptides; Kinetics; Models, Chemical; Models, Molecular; Oligopeptides; Peptidyl Transferases; Serine-Type D-Ala-D-Ala Carboxypeptidase; Streptomyces; Structure-Activity Relationship; Substrate Specificity

2005
Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Biochemistry, 2005, Aug-02, Volume: 44, Issue:30

    The Streptomyces R61 dd-peptidase, a functional model for penicillin-binding proteins, catalyzes the hydrolysis and aminolysis of d-alanyl-d-alanine-terminating peptides by specific amines. In vivo, this reaction completes bacterial cell wall biosynthesis. For in vitro studies of this enzyme to date, various nonspecific acyl-donor substrates have been employed. Recently, however, a peptidoglycan-mimetic peptide substrate, glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl-d-alanine, has been described that is much more specific for this enzyme. In this paper, we describe the synthesis and kinetic characterization of an analogous thiolester substrate, 3-(N-glycyl-l-cysteinyl)-propanoyl-d-alanyl-d-thiolactate, that the enzyme hydrolyzes and aminolyzes very efficiently (k(cat)/K(m) = 1.0 x 10(7) s(-)(1) M(-)(1)). Direct or indirect, by means of a thiol trap, spectrophotometric monitoring of the reactions of this substrate is readily achieved. Deacylation of the enzyme is rate-determining under substrate saturation conditions, and therefore the aminolysis reaction can be directly studied. The results show that d-amino acids and certain Gly-l-Xaa dipeptides and tripeptides may act as acyl acceptors at the active site of the enzyme. d-Phenylalanine and Gly-l-Phe were the most effective d-amino acid and dipeptide acceptors, respectively. On the basis of the dual specificity of the active site for acceptors (d-amino acids and Gly-l-Xaa peptides), "dual function" acceptors were designed and synthesized. Two of these, aminomalon-(N-ethyl)amide and aminomalon-(N-phenethyl)amide, were particularly effective. It did seem, however, that the observed rates of reaction of these very effective acceptors may be limited by some common, possibly physical, step. More extended, peptidoglycan-like, acceptors were found to be essentially unreactive. The reasons for this counterintuitive behavior are discussed.

    Topics: Binding Sites; Catalysis; Chromogenic Compounds; Dipeptides; Esters; Molecular Mimicry; Oligopeptides; Peptidyl Transferases; Serine-Type D-Ala-D-Ala Carboxypeptidase; Streptomyces; Substrate Specificity; Sulfhydryl Compounds

2005