glycitein and malonylgenistin

glycitein has been researched along with malonylgenistin* in 3 studies

Other Studies

3 other study(ies) available for glycitein and malonylgenistin

ArticleYear
Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species.
    Enzyme and microbial technology, 2020, Volume: 132

    Microorganism selection is critical to deglycosylation in soybean fermentation for producing beneficial phytochemicals. This study investigated isoflavone bioconversion in soybean extract inoculated with Lactobacillus plantarum K2-12 and Lactobacillus curvatus JD0-31 exhibiting different enzyme activities. L. plantarum showed higher esterase (C4), esterase (C8), β-galactosidase, α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminase activities. We found that isoflavone bioconversion was distinguished into isoflavone backbone structure types. Malonyl- and acetyl- types of isoflavones except for malonyl daidzin were not significantly differed their contents between lactobacilli. Deglycosylating severity was observed in malonyl genistin in both lactobacilli, resulting mass production of genistein. On the other hand, daidzein glycosides were dependable to lactobacilli, in which L. plantarum efficiently degraded malonyl daidzin and daidzin in fast time. Glycitein was most degradable among the three aglycones by fermentation. These results suggest that efficient control of isoflavone deglycosylation by Lactobacillus species should be controlled to the inoculation period and select target isoflavones.

    Topics: Fermentation; Glucosides; Glycine max; Glycosides; Glycosylation; Isoflavones; Lactobacillus; Plant Extracts

2020
Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.
    Journal of food science, 2016, Volume: 81, Issue:3

    Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%.

    Topics: Food Handling; Glucosides; Glycine max; Hot Temperature; Humans; Isoflavones; Kinetics; Soy Milk

2016
Macronutrients, Phytochemicals, and Antioxidant Activity of Soybean Sprout Germinated with or without Light Exposure.
    Journal of food science, 2015, Volume: 80, Issue:6

    This study examined the macronutrients, phytochemicals, and antioxidant activities of yellow soybean sprout (YSS) and green soybean sprout (GSS) with different germination days. YSS and GSS were obtained by sprouting soybean in darkness or with light exposure at 21 °C. Lipid, protein, carbohydrate, and ash contents were analyzed before and after soybean germination. Phytochemicals (total phenolic compounds, saponin, and isoflavone) were also determined. DPPH, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) were determined to examine the antioxidant activities of soybean sprout. Results showed YSS had a higher yield than GSS. Based on dry mass composition, 7-d germination of GSS decreased 14% protein, 37% lipid, 22% carbohydrate, and 16% ash, whereas 7-d germination of YSS decreased 6% protein and 47% lipid. Carbohydrate did not change and ash significantly increased for the 7-d germinated YSS. Lipid was greatly metabolized in germination, which explained why the protein relative percentage in dried soybean sprout was higher than that in the corresponding soybean. Total phenolic compounds and saponin (mg/g soybean sprout, dry basis) had the same accumulation trend in soybean sprout with the increases in germination days. Aglycone isoflavones (genistein, glycitein, and daidzein) and daidzin showed an increased trend, whereas malonylgenistin and malonylglycitin showed a decreased trend with germination days for both GSS and YSS. The change in other isoflavones did not show definite trends. GSS had 20% more antioxidant activities than YSS (7-d germinated soybean sprout). The increases in ORAC antioxidant activity suggest eating GSS may be more beneficial than GSS for promoting human health.

    Topics: Antioxidants; Biphenyl Compounds; Carbohydrates; Color; Germination; Glucosides; Glycine max; Isoflavones; Light; Lipids; Phenol; Phenols; Phytochemicals; Picrates; Proteins; Saponins

2015