glycitein has been researched along with daidzin* in 13 studies
1 trial(s) available for glycitein and daidzin
Article | Year |
---|---|
Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women.
Isoflavone supplements, consumed by women experiencing menopausal symptoms, are suggested to have positive effects on menopause-related adiposity and cardiovascular disease risk profile, but discussions about their safety are still ongoing.. The objective was to study the effects of an 8-wk consumption of 2 different isoflavone supplements compared with placebo on whole-genome gene expression in the adipose tissue of postmenopausal women.. This double-blind, randomized, placebo-controlled crossover intervention consisted of 2 substudies, one with a low-genistein (LG) supplement (56% daidzein + daidzin, 16% genistein + genistin, and 28% glycitein + glycitin) and the other with a high-genistein (HG) supplement (49% daidzein + daidzin, 41% genistein + genistin, and 10% glycitein + glycitin). Both supplements provided ∼ 100 mg isoflavones/d (aglycone equivalents). After the 8-wk isoflavone and placebo period, whole-genome arrays were performed in subcutaneous adipose tissue of postmenopausal women (n = 26 after LG, n = 31 after HG). Participants were randomized by equol-producing phenotype, and data analysis was performed per substudy for equol producers and nonproducers separately.. Gene set enrichment analysis showed downregulation of expression of energy metabolism-related genes after LG supplementation (n = 24) in both equol-producing phenotypes and oppositely regulated expression for equol producers (down) and nonproducers (up) after HG supplementation (n = 31). Expression of inflammation-related genes was upregulated in equol producers but downregulated in nonproducers, independent of supplement type. Only 4.4-7.0% of the genes with significantly changed expression were estrogen responsive. Body weight, adipocyte size, and plasma lipid profile were not affected by isoflavone supplementation.. Effects of isoflavones on adipose tissue gene expression were influenced by supplement composition and equol-producing phenotype, whereas estrogen-responsive effects were lacking. LG isoflavone supplementation resulted in a caloric restriction-like gene expression profile for both producer phenotypes and pointed toward a potential beneficial effect, whereas both supplements induced anti-inflammatory gene expression in equol producers. The study was registered at clinicaltrials.gov as NCT01556737. Topics: Adipose Tissue; Adiposity; Aged; Cross-Over Studies; Dietary Supplements; Double-Blind Method; Equol; Female; Gene Expression; Genistein; Humans; Isoflavones; Middle Aged; Netherlands; Nutritional Status; Postmenopause; Surveys and Questionnaires | 2014 |
12 other study(ies) available for glycitein and daidzin
Article | Year |
---|---|
Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Topics: Amino Acids; Antioxidants; Bacillus amyloliquefaciens; Fermentation; Food Hypersensitivity; Genistein; Glycine max; Isoflavones; Nutritive Value; Phenols | 2020 |
Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro.
Topics: Anticarcinogenic Agents; Apoptosis; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Female; Glycine max; Humans; Isoflavones; MCF-7 Cells | 2018 |
Metabolite Identification and Pharmacokinetic Profiling of Isoflavones from Black Soybean in Rats Using Ultrahigh-Performance Liquid Chromatography with Linear-Ion-Trap-Orbitrap and Triple-Quadrupole Tandem Mass Spectrometry.
Black soybeans are rich in isoflavones, which have several beneficial health effects. In this study, a validated method based on UHPLC-MS/MS was developed to screen black-soybean metabolites in rat urine, bile, and plasma and to quantify the compounds (daidzein, genistein, glycitein, and daidzin) and their metabolites (daidzein-4'-β-d-glucuronide, genistein-7-β-d-glucuronide, and genistein-4'-β-d-glucuronide) in plasma. Thirty-seven compounds were tentatively detected in the biological samples. The method was fully validated in quantitative experiments, including in assessments of linearity (2.5-100 ng/mL for daidzein, genistein, and glycitein; 10-100 ng/mL for daidzin; 5-3125 ng/mL for genistein-7-β-d-glucuronide; and 5-1562.5 ng/mL for daidzein-4'-β-d-glucuronide and genistein-4'-β-d-glucuronide), matrix effects (85-115%), recovery (80-105%), precision (<10%), and accuracy (<10%). The compounds were stable throughout sample storage, treatment, and analysis. The method was first applied to detect IFs and metabolites in rats after oral administration of black-soybean extract. These results support the potential of this method for successful application in pharmacokinetic studies. Topics: Animals; Bile; Chromatography, High Pressure Liquid; Genistein; Glucuronides; Glycine max; Isoflavones; Male; Rats; Rats, Sprague-Dawley; Sensitivity and Specificity; Tandem Mass Spectrometry | 2018 |
Rapid, sensitive separation of the three main isoflavones in soybean using immunoaffinity chromatography.
Daidzin, genistin, and glycitein are major isoflavone compounds in soybean that are indispensable nutrients in traditional Chinese foods. Generally, strategies for detecting and separating soy isoflavones have been based on HPLC and chromatographic techniques, which are tedious and time-consuming procedures. In the present study, we developed an ELISA-based approach for daidzin detection using a broad-specificity monoclonal antibody (clone number: AA9) with an effective detection range of 10-10 000 ng/mL. Subsequently, we prepared an immunoaffinity column by coupling the monoclonal antibody AA9 to CNBr-activated Sepharose 4B. Our results demonstrate that the immunoaffinity column can efficiently and specifically extract daidzin, glycitein, and genistin from numerous structurally similar soy isoflavones in leguminous plants, thereby providing a new method for the extraction of target components from similar compounds in natural products. Topics: Chromatography, Affinity; Enzyme-Linked Immunosorbent Assay; Glycine max; Isoflavones; Time Factors | 2016 |
Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.
Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%. Topics: Food Handling; Glucosides; Glycine max; Hot Temperature; Humans; Isoflavones; Kinetics; Soy Milk | 2016 |
Macronutrients, Phytochemicals, and Antioxidant Activity of Soybean Sprout Germinated with or without Light Exposure.
This study examined the macronutrients, phytochemicals, and antioxidant activities of yellow soybean sprout (YSS) and green soybean sprout (GSS) with different germination days. YSS and GSS were obtained by sprouting soybean in darkness or with light exposure at 21 °C. Lipid, protein, carbohydrate, and ash contents were analyzed before and after soybean germination. Phytochemicals (total phenolic compounds, saponin, and isoflavone) were also determined. DPPH, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) were determined to examine the antioxidant activities of soybean sprout. Results showed YSS had a higher yield than GSS. Based on dry mass composition, 7-d germination of GSS decreased 14% protein, 37% lipid, 22% carbohydrate, and 16% ash, whereas 7-d germination of YSS decreased 6% protein and 47% lipid. Carbohydrate did not change and ash significantly increased for the 7-d germinated YSS. Lipid was greatly metabolized in germination, which explained why the protein relative percentage in dried soybean sprout was higher than that in the corresponding soybean. Total phenolic compounds and saponin (mg/g soybean sprout, dry basis) had the same accumulation trend in soybean sprout with the increases in germination days. Aglycone isoflavones (genistein, glycitein, and daidzein) and daidzin showed an increased trend, whereas malonylgenistin and malonylglycitin showed a decreased trend with germination days for both GSS and YSS. The change in other isoflavones did not show definite trends. GSS had 20% more antioxidant activities than YSS (7-d germinated soybean sprout). The increases in ORAC antioxidant activity suggest eating GSS may be more beneficial than GSS for promoting human health. Topics: Antioxidants; Biphenyl Compounds; Carbohydrates; Color; Germination; Glucosides; Glycine max; Isoflavones; Light; Lipids; Phenol; Phenols; Phytochemicals; Picrates; Proteins; Saponins | 2015 |
Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets.
Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A(2) (TxA(2)) receptor.. Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA(2) receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA(2) was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA(2) mimic) and the calcium ionophore A23187.. The data showed that aglycone isoflavones and equol bind to TxA(2) receptor in the micromol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [(3)H]-SQ29585 binding was: equol>genistein>daidzein>glycitein>>genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA(2) binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA(2) analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP.. The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A(2) receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events. Topics: Binding, Competitive; Bridged Bicyclo Compounds, Heterocyclic; Calcium; Equol; Fatty Acids, Unsaturated; Genistein; Humans; Hydrazines; Isoflavones; Platelet Activation; Platelet Aggregation; Platelet Aggregation Inhibitors; Receptors, Thromboxane A2, Prostaglandin H2 | 2009 |
Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases.
Complete separation of aglycones and glucosides of selected isoflavones (genistin, genistein, daidzin, daidzein, glycitin, glycitein, ononin, sissotrin, formononetin, and biochanin A) was possible in 1.5 min using an ultrahigh-pressure liquid chromatography (U-HPLC) on a different particular chemically modified stationary phases with a particle size under 2 microm. In addition, selected separation conditions for simultaneous determination of isoflavones together with a group of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, and sinapic acid) allowed separation of all 19 compounds in 1.9 min. Separations were conducted on a non-polar reversed phase (C(18)) and also on more polar phases with cyanopropyl or phenyl groups using a gradient elution with a mobile phase consisting of 0.3% aqueous acetic acid and methanol. Chromatographic peaks were characterised using parameters such as resolution, symmetry, selectivity, etc. Individual substances were identified and quantified using UV-vis diode array detector at wavelength 270 nm. Limits of detection (3S/N) were in the range 200-400 pg ml(-1). Proposed U-HPLC technique was used for separation of isoflavones and phenolic acids in samples of plant materials (Trifolium pratense, Glycine max, Pisum sativum and Ononis spinosa) after acid hydrolysis of the samples and modified Soxhlet extraction. Topics: Caffeic Acids; Chromatography, High Pressure Liquid; Coumaric Acids; Gallic Acid; Genistein; Glycine max; Hydroxybenzoates; Isoflavones; Molecular Structure; Pisum sativum; Plant Extracts; Propionates; Trifolium; Vanillic Acid | 2008 |
Simultaneous determination of isoflavones and bisphenol A in rat serum by high-performance liquid chromatography coupled with coulometric array detection.
A method for simultaneous detection and quantification is presented to determine the presence of isoflavones and bisphenol A in a biological sample. A coulometric array detector was used with reversed-phase high-performance liquid chromatography (HPLC). Daidzein (1), glycitein (2), genistein (3) and their glucoside conjugates, daidzin (4), glycitin (5) and genistin (6), were measured as phytochemicals. Also assayed here was equol (7), a metabolite from compound 1, and bisphenol A (8), an industrial chemical that acts as an endocrine disrupter. All chemicals were simultaneously detected by using a 600-mV single detection voltage with high efficacy. A mixture of 1, 3 and 8 was orally administered to rats, and the levels of these three chemicals in the serum were clearly increased after a 4 kU beta-glucuronidase treatment. The levels of compounds 1 and 3 in the serum were detected at 1665 and 2040 ng/ml, while 8 was at a low level of 417 ng/ml. Compound 7 in the serum was not detected until after enzymatic hydrolysis (72 ng/ml). These results suggest that this analytical method would be useful for metabolic and pharmacokinetic studies on isoflavones and bisphenol A. Topics: Administration, Oral; Animals; Benzhydryl Compounds; Calibration; Chromatography, High Pressure Liquid; Colorimetry; Genistein; Glucuronidase; Isoflavones; Male; Phenols; Rats; Rats, Sprague-Dawley; Sensitivity and Specificity | 2004 |
Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.
The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a hand-weeded control, apparently due to herbicide drift. Topics: Drug Resistance; Genistein; Glycine; Glycine max; Glyphosate; Herbicides; Isoflavones; Isoxazoles; Organophosphonates; Seeds; Shikimic Acid; Tetrazoles | 2003 |
Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating.
The soy isoflavones daidzin, glycitin, and genistin were purified from defatted soy flour using preparative-scale reverse-phase HPLC. The stabilities of the three isoflavones at different heating temperatures were investigated. Daidzin, glycitin, and genistin were lost at a rate of 26, 27, and 27% of their original concentration, respectively, after 3 min at 185 degrees C. At 215 degrees C, decreases of daidzin, glycitin, and genistin were 65, 98, and 74% after 3 min and 91, 99, and 94% after 15 min, respectively. The order of the thermal stabilities, from lowest to highest, was glycitin, genistin, and daidzin. Acetyl daidzin and acetyl genistin, daidzein, glycitein, and genistein were produced during heating at temperatures above 135 degrees C. The rate of binding of an acetyl group to form acetyl daidzin and acetyl genistin from daidzin and genistin was higher than the rate of loss of a glucoside group to form daidzein and genistein. However, acetyl daidzin and acetyl genistin decreased sharply at temperatures above 200 degrees C, while daidzein, glycitein, and genistein were relatively stable over 30 min. The stability of daidzein was higher than that of glycitein or genistein. Topics: Acetylation; Chromatography, High Pressure Liquid; Genistein; Glycine max; Hot Temperature; Isoflavones; Kinetics | 2002 |
Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon.
Besides genistein and daidzein, which are active inducers of the nodYABCSUIJ operon in Bradyrhizobium japonicum, soybean seeds also excrete compounds that are not inducers of the nodYABCSUIJ genes but enhance induction of this operon in the presence of a suboptimal genistein concentration. This synergism was studied in detail, and specific compounds were identified in seed exudate which specifically induce the nodD1 gene but not the nodYABCSUIJ operon. Therefore, our current hypothesis is that the observed synergism is caused by a specific induction of nodD1. The specific nodD1 inducers from soybean seed extract have been purified and characterized chemically. They appear to be derivatives of genistein, glycitein, and daidzein with glucose, malonyl, and acetyl groups attached. Both root and seed exudate appear to contain these compounds, with the seed being the major source. No hydrolysis of these compounds to their aglycone forms was detected in the presence of B. japonicum. A model for nod gene induction in B. japonicum is discussed. Topics: Bacterial Proteins; beta-Galactosidase; Chromatography, High Pressure Liquid; Flavonoids; Gene Expression Regulation, Bacterial; Genistein; Glycine max; Hydrolysis; Isoflavones; Magnetic Resonance Spectroscopy; Models, Genetic; Operon; Rhizobiaceae; Spectrometry, Mass, Fast Atom Bombardment; Spectrophotometry, Ultraviolet; Transcriptional Activation | 1992 |