glutaryl-coenzyme-a and pyridine

glutaryl-coenzyme-a has been researched along with pyridine* in 1 studies

Other Studies

1 other study(ies) available for glutaryl-coenzyme-a and pyridine

ArticleYear
Elucidation of the complete Azorhizobium nicotinate catabolism pathway.
    Journal of bacteriology, 1992, Volume: 174, Issue:23

    A complete pathway for Azorhizobium caulinodans nicotinate catabolism has been determined from mutant phenotype analyses, isolation of metabolic intermediates, and structural studies. Nicotinate serves as a respiratory electron donor to O2 via a membrane-bound hydroxylase and a specific c-type cytochrome oxidase. The resulting oxidized product, 6-hydroxynicotinate, is next reduced to 1,4,5,6-tetrahydro-6-oxonicotinate. Hydrolytic ring breakage follows, with release of pyridine N as ammonium. Decarboxylation then releases the nicotinate C-7 carboxyl group as CO2, and the remaining C skeleton is then oxidized to yield glutarate. Transthioesterification with succinyl coenzyme A (succinyl-CoA) yields glutaryl-CoA, which is then oxidatively decarboxylated to yield crotonyl-CoA. As with general acyl beta oxidation, L-beta-hydroxybutyryl-CoA, acetoacetyl-CoA, and finally two molecules of acetyl-CoA are produced. In sum, nicotinate is catabolized to yield two CO2 molecules, two acetyl-CoA molecules, and ammonium. Nicotinate catabolism stimulates Azorhizobium N2 fixation rates in culture. Nicotinate catabolism mutants still able to liberate pyridine N as ammonium retain this capability, whereas mutants so blocked do not. From, mutant analyses and additional physiological tests, N2 fixation stimulation is indirect. In N-limited culture, nicotinate catabolism augments anabolic N pools and, as a consequence, yields N2-fixing cells with higher dinitrogenase content.

    Topics: Acyl Coenzyme A; Biodegradation, Environmental; Glutarates; Niacin; Nicotinic Acids; Nitrogen Fixation; Pyridines; Quaternary Ammonium Compounds; Rhizobiaceae

1992