glutamyl-valyl-glycine has been researched along with allyl-isothiocyanate* in 2 studies
2 other study(ies) available for glutamyl-valyl-glycine and allyl-isothiocyanate
Article | Year |
---|---|
Enhancement of allyl isothiocyanate-evoked responses of mouse trigeminal ganglion cells by the kokumi substance γ-glutamyl-valyl-glycine (γ-EVG) through activation of the calcium-sensing receptor (CaSR).
Some γ-glutamyl peptides including glutathione (γ-Glu-Cys-Gly) and γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly= γ-EVG) are reported to increase the intensity of basic tastes, such as salty, sweet, and umami, although they have no taste themselves at tested concentrations. The mechanism of action of γ-glutamyl peptides is not clearly understood, but the calcium sensing receptor (CaSR) may be involved. Glutathione and γ-EVG enhance the pungency of some spices, and the present study investigated the effects of γ-EVG on the responses of trigeminal ganglion (TG) cells to thermosensitiveTRP channel agonists. Single-cell RT-PCR revealed that most CaSR-expressing cells co-expressed TRPV1 (sensitive to capsaicin) and TRPA1 (sensitive to allyl isothiocyanate= AITC). Intracellular Ca Topics: Animals; Capsaicin; Glutathione; Mice; Receptors, Calcium-Sensing; Trigeminal Ganglion; TRPA1 Cation Channel | 2023 |
Increases in the pungency of allyl isothiocyanate and piperine by CaSR agonists, glutathione and γ-glutamyl-valyl-glycine.
γ-Glutamyl peptides, including glutathione (γ-Glu-Cys-Gly, GSH) and γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly), have been shown to increase the intensity of basic tastes, such as salty, sweet, and umami, and flavor, including mouthfulness, but had no taste themselves at the concentrations tested. Although the mechanisms of action of γ-glutamyl peptides currently remain unclear, the involvement of the calcium sensing receptor (CaSR) has been suggested. Since GSH and γ-Glu-Val-Gly increase the pungency of some spices, the present study investigated their effects on the pungency of allyl isothiocyanate (AITC) using a sensory evaluation. GSH and γ-Glu-Val-Gly both significantly increased the pungency of AITC, while anserine, a peptide without CaSR activity, did not. GSH-induced increases in pungency were suppressed by NPS-2143, a CaSR inhibitor. Further, γ-Glu-Val-Gly significantly increased the pungency of piperine. The present results suggest that GSH and γ-Glu-Val-Gly increased the pungency by activating CaSR. Topics: Alkaloids; Anserine; Benzodioxoles; Glutathione; Isothiocyanates; Oligopeptides; Peptides; Piperidines; Polyunsaturated Alkamides; Receptors, Calcium-Sensing | 2022 |