glutamine and oxadiazoles

glutamine has been researched along with oxadiazoles in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19905 (50.00)18.7374
1990's4 (40.00)18.2507
2000's1 (10.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Köhler, M; Seeburg, PH; Sommer, B; Sprengel, R1
Raigorodsky, G; Urca, G2
Krebs, JC; Wirtshafter, D1
Dye, J; Heiligenberg, W; Kawasaki, M; Keller, CH1
Horne, AL; Simmonds, MA1
Shreve, PE; Uretsky, NJ1
Boldry, R; Lee, T; Stephens, RL; Uretsky, NJ1
Ito, M; Izu, H; Okino, N; Sakaguchi, K1
Fowler, L; Pearce, B; Watts, J; Whitton, PS1

Other Studies

10 other study(ies) available for glutamine and oxadiazoles

ArticleYear
RNA editing in brain controls a determinant of ion flow in glutamate-gated channels.
    Cell, 1991, Oct-04, Volume: 67, Issue:1

    Topics: Amino Acid Sequence; Animals; Base Sequence; Brain; Cloning, Molecular; Codon; Exons; Genomic Library; Glutamates; Glutamic Acid; Glutamine; Ion Channel Gating; Kainic Acid; Liver; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Oligodeoxyribonucleotides; Oxadiazoles; Polymerase Chain Reaction; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Neurotransmitter; RNA; RNA, Messenger

1991
Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate.
    European journal of pharmacology, 1990, Jun-21, Volume: 182, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesics; Animals; Aspartic Acid; Dipeptides; Electric Stimulation; Glutamine; Kynurenic Acid; Male; Mice; Motor Activity; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord; Vocalization, Animal

1990
Control of food intake by kainate/quisqualate receptors in the median raphe nucleus.
    Psychopharmacology, 1990, Volume: 101, Issue:1

    Topics: Animals; Drinking; Eating; Glutamine; Injections; Kainic Acid; Male; Norleucine; Oxadiazoles; Piperazines; Quisqualic Acid; Raphe Nuclei; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1990
Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus.
    Proceedings of the National Academy of Sciences of the United States of America, 1989, Volume: 86, Issue:22

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Avoidance Learning; Brain Stem; Electric Fish; Electric Organ; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter

1989
The pharmacology of quisqualate and AMPA in the cerebral cortex of the rat in vitro.
    Neuropharmacology, 1989, Volume: 28, Issue:10

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Dose-Response Relationship, Drug; Drug Interactions; Glutamine; Ibotenic Acid; In Vitro Techniques; Kynurenic Acid; Male; Neuromuscular Depolarizing Agents; Oxadiazoles; Oxazoles; Pentobarbital; Quisqualic Acid; Rats; Rats, Inbred Strains; Taurine

1989
Role of quisqualic acid receptors in the hypermotility response produced by the injection of AMPA into the nucleus accumbens.
    Pharmacology, biochemistry, and behavior, 1988, Volume: 30, Issue:2

    Topics: 2-Aminoadipic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Glutamates; Glutamine; Ibotenic Acid; Injections; Kainic Acid; Locomotion; Male; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Oxazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Drug

1988
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
    European journal of pharmacology, 1988, Aug-24, Volume: 153, Issue:2-3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine

1988
Activation of excitatory amino acid receptors may mediate the folate-induced stimulation of locomotor activity after bilateral injection into the rat nucleus accumbens.
    The Journal of pharmacology and experimental therapeutics, 1986, Volume: 239, Issue:3

    Topics: 2-Aminoadipic Acid; Acetylcholine; Animals; Corpus Striatum; Diaminopimelic Acid; Folic Acid; Formyltetrahydrofolates; Glutamates; Glutamine; Kainic Acid; Male; Mathematics; Mice; Motor Activity; Nucleus Accumbens; Oxadiazoles; Pterins; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Septal Nuclei; Taurine

1986
The Glu residue in the conserved Asn-Glu-Pro sequence of endoglycoceramidase is essential for enzymatic activity.
    Biochemical and biophysical research communications, 1999, Jun-24, Volume: 260, Issue:1

    Topics: Amino Acid Sequence; Amino Acids; Carbohydrate Sequence; Fluorescent Dyes; Glutamine; Glycoside Hydrolases; Hydrolysis; Models, Chemical; Molecular Sequence Data; Oxadiazoles; Rhodococcus; Time Factors

1999
Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: Involvement of nitric oxide.
    Brain research bulletin, 2005, May-30, Volume: 65, Issue:6

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arginine; Behavior, Animal; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Glutamic Acid; Glutamine; Hippocampus; Indazoles; Male; Microdialysis; N-Methylaspartate; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Oxadiazoles; Penicillamine; Quinoxalines; Rats; Rats, Wistar; Wakefulness

2005