glutamine has been researched along with everolimus in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 3 (50.00) | 2.80 |
Authors | Studies |
---|---|
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Benet, LZ; Christians, U; Jacobsen, W; Leibfritz, D; Litt, L; Niemann, CU; Serkova, N | 1 |
Baudy, AR; Daemen, A; Evangelista, M; Gao, M; Haley, B; Hatzivassiliou, G; Pusapati, RV; Sandoval, W; Settleman, J; Wilson, C | 1 |
Chen, J; Dang, R; Emberley, E; Gross, M; Huang, T; Li, W; MacKinnon, A; Pan, A; Parlati, F; Singh, D; Sotirovska, N; Steggerda, SM; Wang, T | 1 |
Akella, L; Bendell, J; Emamekhoo, H; Fan, AC; Gartrell, BA; Goodman, OB; Hsieh, JJ; Hussain, A; Kalebasty, AR; Lee, CH; Liu, S; Matrana, M; McCune, S; Motzer, R; Nikolinakos, PG; Orford, K; Parmar, H; Patel, V; Percent, I; Shaheen, M; Tannir, NM; Vaishampayan, U; Zakharia, Y; Zhang, Z | 1 |
Andreani, S; Bacci, M; Cappello, P; Corbo, V; Costamagna, A; De Santis, MC; Delfino, P; Di Gregorio, E; Giovannetti, E; Gozzelino, L; Gulluni, F; Hirsch, E; Lattanzio, R; Lorito, N; Margaria, JP; Martini, M; Mina, E; Morandi, A; Novelli, F; Porporato, PE; Ratto, E; Sala, G; Scarpa, A; Vicentini, C | 1 |
1 review(s) available for glutamine and everolimus
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
1 trial(s) available for glutamine and everolimus
Article | Year |
---|---|
Telaglenastat plus Everolimus in Advanced Renal Cell Carcinoma: A Randomized, Double-Blinded, Placebo-Controlled, Phase II ENTRATA Trial.
Topics: Angiogenesis Inhibitors; Carcinoma, Renal Cell; Everolimus; Glutaminase; Glutamine; Humans; Kidney Neoplasms; Protein Kinase Inhibitors; Sirolimus | 2022 |
4 other study(ies) available for glutamine and everolimus
Article | Year |
---|---|
Sirolimus, but not the structurally related RAD (everolimus), enhances the negative effects of cyclosporine on mitochondrial metabolism in the rat brain.
Topics: Animals; Aspartic Acid; Body Weight; Brain; Cyclosporine; Drug Synergism; Everolimus; gamma-Aminobutyric Acid; Glutamic Acid; Glutamine; Immunosuppressive Agents; Magnetic Resonance Spectroscopy; Mitochondria; Oxaloacetic Acid; Phosphates; Rats; Rats, Wistar; Sirolimus; Weight Gain | 2001 |
mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells.
Topics: Adenosine Triphosphate; Animals; Carcinoma; Cell Line, Tumor; Citric Acid Cycle; Combined Modality Therapy; Cytokines; Deoxyglucose; Drug Resistance, Neoplasm; Drug Synergism; Energy Metabolism; Everolimus; Female; Glucose-6-Phosphate Isomerase; Glutaminase; Glutamine; Glycolysis; Hep G2 Cells; Humans; Mechanistic Target of Rapamycin Complex 1; Metabolomics; Mice; Mice, Nude; Molecular Targeted Therapy; Multiprotein Complexes; Neoplasm Proteins; Neoplasms; Ovarian Neoplasms; Pentose Phosphate Pathway; Ribosomal Protein S6 Kinases, 70-kDa; RNA Interference; RNA, Small Interfering; TOR Serine-Threonine Kinases; Tumor Stem Cell Assay; Xenograft Model Antitumor Assays | 2016 |
The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma.
Topics: Anilides; Animals; Benzeneacetamides; Carcinoma, Renal Cell; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Synergism; Everolimus; Female; Gene Expression Regulation, Neoplastic; Glucose; Glutaminase; Glutamine; Humans; Kidney Neoplasms; Mice; Pyridines; Signal Transduction; Thiadiazoles; Xenograft Model Antitumor Assays | 2021 |
Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer.
Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Everolimus; Glutaminase; Glutamine; Lipids; Lysosomes; Mechanistic Target of Rapamycin Complex 1; Mice; MTOR Inhibitors; Nutrients; Pancreatic Neoplasms; Phosphatidylinositol 3-Kinases; Signal Transduction; TOR Serine-Threonine Kinases | 2023 |