glutamine has been researched along with bicalutamide in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 1 (33.33) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Brás, LA; Cardoso, HJ; Carvalho, TMA; Figueira, MI; Madureira, PA; Oliveira, PJ; Sardão, VA; Socorro, S; Vaz, CV | 1 |
1 review(s) available for glutamine and bicalutamide
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
2 other study(ies) available for glutamine and bicalutamide
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation.
Topics: Amino Acid Transport System ASC; Androgens; Anilides; Animals; Caspase 3; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dihydrotestosterone; Gene Expression Regulation, Neoplastic; Glucose; Glutaminase; Glutamine; Glycolysis; Humans; Lactic Acid; Lipid Metabolism; Male; Minor Histocompatibility Antigens; Models, Biological; Neoplasm Proteins; Nitriles; Prostatic Neoplasms; Prostatic Neoplasms, Castration-Resistant; Rats; Sulfides; Thiadiazoles; Tosyl Compounds | 2021 |