glutamine and 11-cis-retinal

glutamine has been researched along with 11-cis-retinal in 23 studies

Research

Studies (23)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's6 (26.09)18.2507
2000's12 (52.17)29.6817
2010's3 (13.04)24.3611
2020's2 (8.70)2.80

Authors

AuthorsStudies
Franke, RR; Khorana, HG; Lin, SW; Mathies, RA; Sakmar, TP1
Cohen, GB; Oprian, DD; Robinson, PR1
Nathans, J1
Beck, M; Fahmy, K; Jäger, F; Sakmar, TP; Siebert, F; Zvyaga, TA1
Cideciyan, AV; Jacobson, SG; Li, ZY; Milam, AH1
Beck, M; Sakmar, TP; Siebert, F1
Berson, EL; Dryja, TP; McEvoy, JA; McGee, TL1
Birch, DG; Bowne, SJ; Daiger, SP; Heckenlively, JR; Lewis, RA; Mintz-Hittner, H; Northrup, H; Rodriquez, JA; Ruiz, RS; Saperstein, DA; Sohocki, MM; Sullivan, LS1
Berglund, MM; Fredriksson, R; Larhammar, D; Salaneck, E1
Gross, AK; Oprian, DD; Xie, G1
Gross, AK; Oprian, DD; Rao, VR1
Sineshchekov, OA; Spudich, EN; Spudich, JL; Wang, WW1
Kazmi, MA; Kliger, DS; Lewis, JW; Sakmar, TP; Szundi, I1
Birge, RR; Galan, J; Hillebrecht, JR; McCleary, K; Ramos, L; Rangarajan, R; Stuart, JA; Ward, DE1
Cerione, RA; Majumdar, S; Ramachandran, S1
Mahalingam, M; Vogel, R1
Mahalingam, M; Standfuss, J; Vogel, R; Zaitseva, E1
Kralj, JM; Rothschild, KJ; Spudich, EN; Spudich, JL1
Inoue, K; Kandori, H; Maiti, TK; Yamada, K1
Deisseroth, K; Hayashi, S; Ishitani, R; Ito, J; Kamiya, M; Kato, HE; Koyama, M; Maturana, AD; Nureki, O; Takemoto, M1
Bertranpetit, J; Fernández-Sampedro, MA; Garriga, P; Invergo, BM; Ramon, E1
Adam, S; Amoyal, GS; Borin, VA; Church, JR; Olsen, JMH; Schapiro, I1
Cho, SG; Chuon, K; Jung, KH; Meas, S; Shim, JG; Song, M1

Other Studies

23 other study(ies) available for glutamine and 11-cis-retinal

ArticleYear
Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Biochemistry, 1992, Jun-09, Volume: 31, Issue:22

    Topics: Alanine; Animals; Binding Sites; Cattle; Glutamates; Glutamic Acid; Glutamine; Isomerism; Models, Molecular; Molecular Conformation; Mutation; Rhodopsin; Spectrum Analysis, Raman

1992
Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296.
    Biochemistry, 1992, Dec-22, Volume: 31, Issue:50

    Topics: Animals; Cattle; Cell Line; Darkness; Glutamine; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Histidine; Hydrogen-Ion Concentration; Lysine; Mutagenesis; Retinaldehyde; Rhodopsin; Rod Opsins; Transducin

1992
Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin.
    Biochemistry, 1990, Oct-16, Volume: 29, Issue:41

    Topics: Animals; Asparagine; Aspartic Acid; Cattle; Glutamates; Glutamic Acid; Glutamine; Kinetics; Membranes; Models, Molecular; Mutagenesis, Site-Directed; Plasmids; Protein Conformation; Recombinant Proteins; Retinaldehyde; Rhodopsin; Schiff Bases; Spectrophotometry

1990
Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Proceedings of the National Academy of Sciences of the United States of America, 1993, Nov-01, Volume: 90, Issue:21

    Topics: Amino Acid Sequence; Animals; Asparagine; Aspartic Acid; Cell Line; Glutamates; Glutamic Acid; Glutamine; Kinetics; Light; Mutagenesis, Site-Directed; Protein Conformation; Recombinant Proteins; Retinaldehyde; Rhodopsin; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Time Factors; Transfection

1993
Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa.
    Investigative ophthalmology & visual science, 1996, Volume: 37, Issue:5

    Topics: Aged; Aged, 80 and over; Electroretinography; Female; Fluorescent Antibody Technique; Glutamine; Humans; Immunohistochemistry; Male; Middle Aged; Pedigree; Photoreceptor Cells; Point Mutation; Retina; Retinitis Pigmentosa; Rhodopsin; Scotoma; Visual Acuity; Visual Field Tests; Visual Fields; Visual Perception

1996
Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin.
    Biochemistry, 1998, May-19, Volume: 37, Issue:20

    Topics: Alanine; Amino Acid Substitution; Animals; Asparagine; Cattle; Glutamic Acid; Glutamine; Histidine; Membrane Proteins; Mutagenesis, Site-Directed; Phenylalanine; Photochemistry; Protein Structure, Secondary; Rhodopsin; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Transducin

1998
Novel rhodopsin mutations Gly114Val and Gln184Pro in dominant retinitis pigmentosa.
    Investigative ophthalmology & visual science, 2000, Volume: 41, Issue:10

    Topics: DNA Mutational Analysis; Female; Glutamine; Glycine; Humans; Male; Mutation, Missense; Pedigree; Polymorphism, Single-Stranded Conformational; Proline; Retinitis Pigmentosa; Rhodopsin; Valine

2000
Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies.
    Human mutation, 2001, Volume: 17, Issue:1

    Topics: Amino Acid Substitution; Animals; Arginine; Cysteine; Genetic Variation; Glutamine; Homeodomain Proteins; Humans; Intermediate Filament Proteins; Leucine; Membrane Glycoproteins; Mutation; Nerve Tissue Proteins; Optic Atrophies, Hereditary; Peripherins; Prevalence; Proline; Retinal Degeneration; Retinal Diseases; Retinitis Pigmentosa; Rhodopsin; Trans-Activators; Tyrosine

2001
Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding.
    FEBS letters, 2002, May-08, Volume: 518, Issue:1-3

    Topics: Amino Acid Sequence; Animals; Arginine; Benzazepines; Binding Sites; Cattle; Chickens; Glutamine; Humans; Leucine; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Neuropeptide Y; Receptors, Neuropeptide Y; Rhodopsin; Sequence Alignment; Transfection

2002
Slow binding of retinal to rhodopsin mutants G90D and T94D.
    Biochemistry, 2003, Feb-25, Volume: 42, Issue:7

    Topics: Alanine; Amino Acid Sequence; Animals; Aspartic Acid; Glutamic Acid; Glutamine; Glycine; Humans; Molecular Sequence Data; Mutagenesis, Insertional; Night Blindness; Protein Binding; Protein Denaturation; Retinaldehyde; Rhodopsin; Schiff Bases; Spectrophotometry, Ultraviolet; Threonine

2003
Characterization of rhodopsin congenital night blindness mutant T94I.
    Biochemistry, 2003, Feb-25, Volume: 42, Issue:7

    Topics: Amino Acid Sequence; Animals; Cattle; COS Cells; Glutamic Acid; Glutamine; Humans; Hydrogen-Ion Concentration; Isoleucine; Kinetics; Light; Molecular Sequence Data; Mutagenesis, Insertional; Night Blindness; Rhodopsin; Schiff Bases; Threonine; Transducin; Transfection

2003
Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin.
    The Journal of biological chemistry, 2003, Sep-05, Volume: 278, Issue:36

    Topics: Escherichia coli; Glutamine; Hydrogen-Ion Concentration; Ionophores; Leucine; Light; Mutagenesis, Site-Directed; Mutation; Potassium; Protons; Retina; Rhodopsin; Rhodopsins, Microbial; Seawater; Spectrophotometry; Time Factors

2003
Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Biochemistry, 2004, Oct-05, Volume: 43, Issue:39

    Topics: Amino Acid Substitution; Animals; Aspartic Acid; Cattle; COS Cells; Glutamic Acid; Glutamine; Mutagenesis, Site-Directed; Phenylalanine; Photolysis; Protons; Rhodopsin; Schiff Bases; Spectrophotometry

2004
Structure, function, and wavelength selection in blue-absorbing proteorhodopsin.
    Biochemistry, 2006, Feb-14, Volume: 45, Issue:6

    Topics: Amino Acid Sequence; Archaeal Proteins; Arginine; Aspartic Acid; Bacterial Chromatophores; Glutamic Acid; Glutamine; Hydrogen-Ion Concentration; Models, Molecular; Molecular Sequence Data; Retina; Rhodopsin; Rhodopsins, Microbial; Schiff Bases; Sensory Rhodopsins; Spectrophotometry; Static Electricity

2006
New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins.
    The Journal of biological chemistry, 2006, Apr-07, Volume: 281, Issue:14

    Topics: Arginine; Escherichia coli; Glutamine; GTP Phosphohydrolases; GTP-Binding Proteins; Guanosine Diphosphate; Guanosine Triphosphate; Hydrolysis; Mutagenesis, Site-Directed; Receptors, G-Protein-Coupled; Rhodopsin; Signal Transduction; Transducin

2006
The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
    Biochemistry, 2006, Dec-26, Volume: 45, Issue:51

    Topics: Amino Acid Substitution; Animals; Cattle; Glutamic Acid; Glutamine; Hydrogen-Ion Concentration; Isomerism; Ligands; Photochemistry; Protein Conformation; Protein Denaturation; Rhodopsin; Schiff Bases; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Vitamin A

2006
Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Journal of molecular biology, 2008, Jun-27, Volume: 380, Issue:1

    Topics: Animals; Chlorocebus aethiops; COS Cells; Disulfides; Glutamic Acid; Glutamine; Humans; Hydrogen-Ion Concentration; Mutant Proteins; Mutation; Protein Precursors; Protein Structure, Secondary; Protons; Rhodopsin; Schiff Bases; Spectroscopy, Fourier Transform Infrared; Structure-Activity Relationship

2008
Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins.
    The journal of physical chemistry. B, 2008, Sep-18, Volume: 112, Issue:37

    Topics: Absorption; Glutamine; Hydrogen-Ion Concentration; Leucine; Oceans and Seas; Retina; Retinoids; Rhodopsin; Rhodopsins, Microbial; Schiff Bases; Spectrum Analysis, Raman

2008
L105K mutant of proteorhodopsin.
    Biochemistry, 2012, Apr-17, Volume: 51, Issue:15

    Topics: Glutamine; Hydrogen-Ion Concentration; Leucine; Mutation; Rhodopsin; Rhodopsins, Microbial; Schiff Bases; Spectroscopy, Fourier Transform Infrared

2012
Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening.
    PloS one, 2015, Volume: 10, Issue:6

    Topics: Bacteriorhodopsins; Crystallography, X-Ray; Diterpenes; Electrophysiology; Glutamine; HEK293 Cells; Humans; Ion Channel Gating; Models, Molecular; Molecular Dynamics Simulation; Protein Interaction Domains and Motifs; Retinaldehyde; Rhodopsin

2015
Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution.
    Scientific reports, 2016, Feb-11, Volume: 6

    Topics: Adaptation, Physiological; Alanine; Amino Acid Sequence; Amino Acid Substitution; Animals; Arginine; Biological Evolution; Chlorocebus aethiops; COS Cells; G-Protein-Coupled Receptor Kinase 1; Gene Expression; Glutamine; Glycosylation; Humans; Mammals; Methionine; Models, Molecular; Mutation; Phenylalanine; Phosphorylation; Phylogeny; Protein Folding; Recombinant Proteins; Rhodopsin; Selection, Genetic; Serine

2016
Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry.
    Chemistry (Weinheim an der Bergstrasse, Germany), 2022, May-16, Volume: 28, Issue:28

    Topics: Glutamine; Leucine; Rhodopsin; Rhodopsins, Microbial; Static Electricity

2022
Heliorhodopsin binds and regulates glutamine synthetase activity.
    PLoS biology, 2022, Volume: 20, Issue:10

    Topics: Ammonia; Glutamate-Ammonia Ligase; Glutamic Acid; Glutamine; Nitrogen; Rhodopsin; Rhodopsins, Microbial

2022