glutaminase has been researched along with malic-acid* in 2 studies
2 other study(ies) available for glutaminase and malic-acid
Article | Year |
---|---|
Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC.
Glutaminase 1 (GLS1) expression is increased in non-small cell lung cancer (NSCLC). GLS1 knockdown using siRNA or inhibition using bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) induced cell cycle arrest with significant reduction of ATP level while levels of reactive oxygen species or glutathione were not affected in NSCLC cell lines. Recently we found that NSCLC significantly depends on cytosol NADH for ATP production. GLS1 remarkably contributes to ATP production through transferring cytosolic NADH into mitochondria via malate-aspartate shuttle by supply of glutamate in NSCLC. Regulation of malate-aspartate shuttle by knockdown or inhibition of glutamic-oxaloacetic transaminase 2 or malate dehydrogenase 2 mimicked GLS1 knockdown, which induced cell death with ATP reduction in NSCLC. Therefore, GLS1 inhibition induced cell cycle arrest with ATP depletion by glutamate reduction. Dual inhibition with BPTES and thymidylate synthase inhibitor, 5-fluorouracil (5-FU), elicits cell death synergistically through cell cycle arrest in NSCLC. A preclinical xenograft model of NSCLC showed remarkable anti-tumour effect synergistically in the BPTES and 5-FU dual therapy group. Topics: A549 Cells; Adenosine Triphosphate; Animals; Aspartic Acid; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Death; Cell Proliferation; Cell Survival; Cytosol; Drug Synergism; Fluorouracil; Gene Knockdown Techniques; Glutamic Acid; Glutaminase; Glutamine; Lung Neoplasms; Malates; Mice, Inbred BALB C; Mice, Nude; Molecular Targeted Therapy; NAD; Oxidation-Reduction; Sulfides; Thiadiazoles; Thymidylate Synthase; Xenograft Model Antitumor Assays | 2016 |
Induction of Phosphoenolpyruvate Carboxykinase (PEPCK) during Acute Acidosis and Its Role in Acid Secretion by V-ATPase-Expressing Ionocytes.
Vacuolar-Type H(+)-ATPase (V-ATPase) takes the central role in pumping H(+) through cell membranes of diverse organisms, which is essential for surviving acid-base fluctuating lifestyles or environments. In mammals, although glucose is believed to be an important energy source to drive V-ATPase, and phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme for gluconeogenesis, is known to be activated in response to acidosis, the link between acid secretion and PEPCK activation remains unclear. In the present study, we used zebrafish larva as an in vivo model to show the role of acid-inducible PEPCK activity in glucose production to support higher rate of H(+) secretion via V-ATPase, by utilizing gene knockdown, glucose supplementation, and non-invasive scanning ion-selective electrode technique (SIET). Zebrafish larvae increased V-ATPase-mediated acid secretion and transiently expression of Pck1, a zebrafish homolog of PEPCK, in response to acid stress. When pck1 gene was knocked down by specific morpholino, the H(+) secretion via V-ATPase decreased, but this effect was rescued by supplementation of glucose into the yolk. By assessing changes in amino acid content and gene expression of respective enzymes, glutamine and glutamate appeared to be the major source for replenishment of Krebs cycle intermediates, which are subtracted by Pck1 activity. Unexpectedly, pck1 knockdown did not affect glutamine/glutamate catalysis, which implies that Pck1 does not necessarily drive this process. The present study provides the first in vivo evidence that acid-induced PEPCK provides glucose for acid-base homeostasis at an individual level, which is supported by rapid pumping of H(+) via V-ATPase at the cellular level. Topics: Acidosis; Amino Acids; Ammonium Compounds; Animals; Citric Acid Cycle; Gene Knockdown Techniques; Glucose; Glutamate Dehydrogenase; Glutaminase; Malates; Phosphoenolpyruvate Carboxykinase (ATP); Protons; RNA, Messenger; Stress, Physiological; Vacuolar Proton-Translocating ATPases; Zebrafish; Zebrafish Proteins | 2015 |