glutaminase has been researched along with lonidamine* in 3 studies
3 other study(ies) available for glutaminase and lonidamine
Article | Year |
---|---|
Mouse Model for Efficient Simultaneous Targeting of Glycolysis, Glutaminolysis, and De Novo Synthesis of Fatty Acids in Colon Cancer.
Colon cancer is a highly anabolic entity with upregulation of glycolysis, glutaminolysis, and de novo synthesis of fatty acids, which also induces a hypercatabolic state in the patient. The blockade of either cancer anabolism or host catabolism has been previously proven to be a successful anticancer experimental treatment. However, it is still unclear whether the simultaneous blockade of both metabolic counterparts can limit malignant survival and the energetic consequences of such an approach. In this chapter, by using the CT26.WT murine colon adenocarcinoma cell line as a model of study, we provide a method to simultaneously perform a pharmacological blockade of tumor anabolism and host catabolism, as a feasible therapeutic approach to treat cancer, and to limit its energetic supply. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Colonic Neoplasms; Diazooxonorleucine; Drug Screening Assays, Antitumor; Fatty Acid Synthase, Type I; Fatty Acids; Female; Glutaminase; Glutamine; Glycolysis; Hexokinase; Indazoles; Mice; Mice, Inbred BALB C; Molecular Targeted Therapy; Orlistat; Smegmamorpha | 2021 |
Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer.
Metabolic inhibition might sensitize tumors to irradiation. Here, we examined the effect of lonidamine (several metabolic effects, inhibiting hexokinase amongst others) and/or 968 (glutaminase inhibitor) on tumor cell metabolism, cell growth, cytotoxicity and radiosensitivity in NSCLC cell lines in vitro in relation to histology.. Adeno- (H23, HCC827, H1975) and squamous cell carcinoma (H520, H292, SW900) NSCLC cells were treated with lonidamine and/or 968 for 72 h under physiological levels of glucose (1.5 mM). Cells were irradiated with 0, 4 or 8 Gy. Cell growth of H2B-mCherry transduced cells and cytotoxicity (CellTox™ Green Cytotoxicity Assay) were measured using live cell imaging (IncuCyte). Inhibitory effects on metabolic profiles was determined using the Seahorse XF96 extracellular Flux analyzer.. NSCLC cell lines responded differently to glycolysis (lonidamine) and/or glutaminase (968) inhibition, largely corresponding with changes in glycolytic and mitochondrial metabolism upon treatment. Response patterns were not related to histology. 968 was cytotoxic in cell lines with high glutaminase C expression (H1975 and H520), whereas combination treatment was cytotoxic in KRAS mutated cell lines SW900 and H23. H292 and HCC827 were resistant to combination treatment. Treatment with 968 and especially lonidamine resulted in radiosensitization of H292 and HCC827 in terms of decreased relative cell growth and increased cytotoxicity.. NSCLC is a heterogeneous disease, which is reflected in the response of different cell lines to the treatment (combinations) reported here. Only a part of NSCLC patients may benefit from the combination of radiation therapy and metabolic inhibition, making stratification necessary. Topics: Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Radiation; Enzyme Inhibitors; Glucose; Glutaminase; Glutamine; Glycolysis; Humans; Indazoles; Lung Neoplasms; Radiation Tolerance; X-Rays | 2018 |
Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.
There is a strong rationale for targeting the metabolic alterations of cancer cells. The most studied of these are the higher rates of glycolysis, glutaminolysis and de novo synthesis of fatty acids (FAs). Despite the availability of pharmacological inhibitors of these pathways, no preclinical studies targeting them simultaneously have been performed. In the present study it was determined whether three key enzymes for glycolysis, glutaminolysis and de novo synthesis of FAs, hexokinase-2, glutaminase and fatty acid synthase, respectively, were overexpressed as compared to primary fibroblasts. In addition, we showed that at clinically relevant concentrations lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat, known inhibitors of the mentioned enzymes, exerted a cell viability inhibitory effect. Genetic downregulation of the three enzymes also reduced cell viability. The three drugs were highly synergistic when administered as a triple combination. Of note, the cytotoxicity of the triple combination was low in primary fibroblasts and was well tolerated when administered into healthy BALB/c mice. The results suggest the feasibility and potential clinical utility of the triple metabolic targeting which merits to be further studied by using either repositioned old drugs or newer, more selective inhibitors. Topics: Animals; Apoptosis; Cell Survival; Diazooxonorleucine; Drug Synergism; Fatty Acid Synthases; Fatty Acids; Fibroblasts; Gene Expression Regulation, Neoplastic; Glutaminase; Glycolysis; Hexokinase; Humans; Indazoles; Lactones; Metabolic Networks and Pathways; Mice; Neoplasms; Orlistat | 2015 |