glutamic acid and 5-(alpha-methyl-4-bromobenzylamino)phosphonomethyl-1,4-dihydroquinoxaline-2,3-dione

glutamic acid has been researched along with 5-(alpha-methyl-4-bromobenzylamino)phosphonomethyl-1,4-dihydroquinoxaline-2,3-dione in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's5 (71.43)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Auberson, YP; Bashir, ZI; Brown, MW; Collingridge, GL; Johnson, BE; Massey, PV; Molnar, E; Moult, PR1
Jones, RS; Woodhall, GL; Yang, J1
Bortolato, M; Castelli, MP; Casu, A; Chen, K; Devoto, P; Flore, G; Frau, R; Godar, SC; Melis, M; Roncada, P; Shih, JC; Soggiu, A; Urbani, A1
Auberson, YP; Budri, M; Calcagno, M; Dekundy, A; Mabrouk, OS; Mela, F; Morari, M; Parsons, CG; Viaro, R1
Balsara, RD; Castellino, FJ; Donahue, DL; Ferreira, AN; Sheets, PL1
Adell, A; Auberson, YP; Campa, L; Jiménez-Sánchez, L1
Conti, P; De Micheli, C; Hansen, KB; Lind, GE; Mou, TC; Pinto, A; Pomper, MG; Tamborini, L1

Other Studies

7 other study(ies) available for glutamic acid and 5-(alpha-methyl-4-bromobenzylamino)phosphonomethyl-1,4-dihydroquinoxaline-2,3-dione

ArticleYear
Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2004, Sep-08, Volume: 24, Issue:36

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Dicarboxylic Acids; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Long-Term Potentiation; Long-Term Synaptic Depression; N-Methylaspartate; Neurons; Neurotransmitter Uptake Inhibitors; Phenols; Picrotoxin; Piperidines; Protein Subunits; Pyrrolidines; Quinoxalines; Rats; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate

2004
Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Jan-11, Volume: 26, Issue:2

    Topics: Age Factors; Animals; Autoreceptors; Chronic Disease; Entorhinal Cortex; Epilepsy, Generalized; Excitatory Amino Acid Antagonists; Glutamic Acid; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Phenols; Pilocarpine; Piperidines; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Status Epilepticus

2006
NMDARs mediate the role of monoamine oxidase A in pathological aggression.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Jun-20, Volume: 32, Issue:25

    Topics: Aggression; Animals; Antisocial Personality Disorder; Autoradiography; Binding Sites; Blotting, Western; Corpus Striatum; Dizocilpine Maleate; Electrophysiological Phenomena; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Male; Mice; Mice, Knockout; Monoamine Oxidase; Motor Activity; Norepinephrine; Patch-Clamp Techniques; Phenols; Piperidines; Prosencephalon; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Serotonin

2012
GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats.
    ACS chemical neuroscience, 2013, May-15, Volume: 4, Issue:5

    Topics: Animals; Corpus Striatum; Dopamine; Dopamine Agents; Dyskinesia, Drug-Induced; gamma-Aminobutyric Acid; Globus Pallidus; Glutamic Acid; Levodopa; Male; Microdialysis; Neostriatum; Oxidopamine; Phenols; Piperidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Substantia Nigra

2013
Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons.
    Neuropharmacology, 2014, Volume: 79

    Topics: Animals; Conotoxins; Dendrites; Excitatory Amino Acid Antagonists; Glutamic Acid; In Vitro Techniques; Membrane Potentials; Mice; Mice, Knockout; Optical Imaging; Patch-Clamp Techniques; Prefrontal Cortex; Pyramidal Cells; Quinoxalines; Receptors, N-Methyl-D-Aspartate

2014
The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2014, Volume: 39, Issue:11

    Topics: Animals; Antidepressive Agents; Depressive Disorder, Treatment-Resistant; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamic Acid; Male; Phenols; Piperidines; Prefrontal Cortex; Quinoxalines; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Schizophrenia; Serotonin; Stereotyped Behavior

2014
Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Proceedings of the National Academy of Sciences of the United States of America, 2017, 08-15, Volume: 114, Issue:33

    Topics: Animals; Binding, Competitive; Crystallography, X-Ray; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Humans; Models, Molecular; Oocytes; Patch-Clamp Techniques; Protein Domains; Protein Multimerization; Protein Subunits; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Xenopus

2017