glucovanillin and vanillin

glucovanillin has been researched along with vanillin* in 6 studies

Other Studies

6 other study(ies) available for glucovanillin and vanillin

ArticleYear
Metabolite Transformation and Enzyme Activities of Hainan Vanilla Beans During Curing to Improve Flavor Formation.
    Molecules (Basel, Switzerland), 2019, Jul-31, Volume: 24, Issue:15

    This paper compares the differences in metabolites of vanilla beans at five different curing stages. Key vanilla flavors, vanillin precursors and main enzymes during the curing process of Hainan vanilla beans were also analyzed. Hundreds of metabolites were detected based on metabolic analyses of a widely targeted metabolome technique, compared with blanched vanilla beans (BVB), sweating vanilla beans (SVB) and drying vanilla beans (DVB), the total peak intensity of cured vanilla beans (CVB) is on the rise. The score plots of principal component analysis indicated that the metabolites were generally similar at the same curing stages, but for the different curing stages, they varied substantially. During processing, vanillin content increased while glucovanillin content decreased, and vanillic acid was present in sweating beans, but its content was reduced in drying beans. Both

    Topics: Benzaldehydes; Flavoring Agents; Food Handling; Humans; Metabolome; Seeds; Taste; Vanilla

2019
A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia.
    Phytochemistry, 2017, Volume: 139

    A recent publication describes an enzyme from the vanilla orchid Vanilla planifolia with the ability to convert ferulic acid directly to vanillin. The authors propose that this represents the final step in the biosynthesis of vanillin, which is then converted to its storage form, glucovanillin, by glycosylation. The existence of such a "vanillin synthase" could enable biotechnological production of vanillin from ferulic acid using a "natural" vanilla enzyme. The proposed vanillin synthase exhibits high identity to cysteine proteases, and is identical at the protein sequence level to a protein identified in 2003 as being associated with the conversion of 4-coumaric acid to 4-hydroxybenzaldehyde. We here demonstrate that the recombinant cysteine protease-like protein, whether expressed in an in vitro transcription-translation system, E. coli, yeast, or plants, is unable to convert ferulic acid to vanillin. Rather, the protein is a component of an enzyme complex that preferentially converts 4-coumaric acid to 4-hydroxybenzaldehyde, as demonstrated by the purification of this complex and peptide sequencing. Furthermore, RNA sequencing provides evidence that this protein is expressed in many tissues of V. planifolia irrespective of whether or not they produce vanillin. On the basis of our results, V. planifolia does not appear to contain a cysteine protease-like "vanillin synthase" that can, by itself, directly convert ferulic acid to vanillin. The pathway to vanillin in V. planifolia is yet to be conclusively determined.

    Topics: Amino Acid Sequence; Benzaldehydes; Coumaric Acids; Cysteine Proteases; Escherichia coli; Orchidaceae; Propionates; Vanilla

2017
Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews.
    Applied and environmental microbiology, 2015, Volume: 81, Issue:15

    Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation.

    Topics: Bacillus; Benzaldehydes; beta-Glucosidase; Cluster Analysis; DNA, Ribosomal; Hydrolysis; Molecular Sequence Data; Phylogeny; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Vanilla

2015
Metabolic changes in different developmental stages of Vanilla planifolia pods.
    Journal of agricultural and food chemistry, 2009, Sep-09, Volume: 57, Issue:17

    The metabolomic analysis of developing Vanilla planifolia green pods (between 3 and 8 months after pollination) was carried out by nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Multivariate data analysis of the (1)H NMR spectra, such as principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA), showed a trend of separation of those samples based on the metabolites present in the methanol/water (1:1) extract. Older pods had a higher content of glucovanillin, vanillin, p-hydroxybenzaldehyde glucoside, p-hydroxybenzaldehyde, and sucrose, while younger pods had more bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A), bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)tartrate (glucoside B), glucose, malic acid, and homocitric acid. A liquid chromatography-mass spectrometry (LC-MS) analysis targeted at phenolic compound content was also performed on the developing pods and confirmed the NMR results. Ratios of aglycones/glucosides were estimated and thus allowed for detection of more minor metabolites in the green vanilla pods. Quantification of compounds based on both LC-MS and NMR analyses showed that free vanillin can reach 24% of the total vanillin content after 8 months of development in the vanilla green pods.

    Topics: Benzaldehydes; Glucosides; Least-Squares Analysis; Magnetic Resonance Spectroscopy; Multivariate Analysis; Seeds; Sensitivity and Specificity; Time Factors; Vanilla

2009
Biosynthesis of vanillin via ferulic acid in Vanilla planifolia.
    Journal of agricultural and food chemistry, 2009, Nov-11, Volume: 57, Issue:21

    (14)C-Labeled phenylalanine, 4-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzyl alcohol, ferulic acid, and methionine were applied to disks of green vanilla pods 3 and 6 months after pollination (immature and mature pods), and the conversion of these compounds to vanillin or glucovanillin was investigated. In mature green vanilla pods, radioactivities of 11, 15, 29, and 24% from (14)C-labeled phenylalanine, 4-coumaric acid, ferulic acid, and methionine, respectively, were incorporated into glucovanillin within 24 h. In the incorporation processes of methionine and phenylalanine into glucovanillin, some of the (14)C labels were also trapped by the unlabeled ferulic acid. However, (14)C-labeled 4-hydroxybenzaldehyde and 4-hydroxybenzyl alcohol were not converted to glucovanillin. On the other hand, in immature green vanilla pods radioactivities of the above six compounds were not incorporated into glucovanillin. Although 4-coumaric acid, ferulic acid, 4-hydroxybenzaldehyde, and 4-hydroxybenzyl alcohol were converted to the respective glucose esters or glucosides and vanillin was converted to glucovanillin, their conversions were believed to be from the detoxication of the aglycones. These results suggest that the biosynthetic pathway for vanillin is 4-coumaric acid --> --> ferulic acid --> --> vanillin --> glucovanillin in mature vanilla pods.

    Topics: Benzaldehydes; Biosynthetic Pathways; Coumaric Acids; Propionates; Vanilla

2009
Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods.
    Journal of agricultural and food chemistry, 2001, Volume: 49, Issue:11

    Glucovanillin was extracted from green pods and simultaneously transformed to vanillin by a combination of enzyme activities involving cell wall degradation and glucovanillin hydrolysis. The reaction is best carried out with 47.5% v/v aqueous ethanol solution during 8 h at 70 degrees C, in a two-step enzymatic reaction using Viscozyme followed by Celluclast, two commercial enzymatic products containing mainly pectinase and cellulase activities, respectively. The extractive reaction proceeded with high efficiency with an amount of extracted vanillin 3.13 times higher than the one obtained with the Soxhlet method. The classical curing/extraction process results in 1.1-1.8 g of vanillin/100 g of dry pods. It is concluded that the enzymatic reaction may substitute the microbial process involved in tissue fermentation previous to vanillin extraction with the simultaneous hydrolysis of glucovanillin.

    Topics: Benzaldehydes; beta-Glucosidase; Chromatography, High Pressure Liquid; Orchidaceae

2001