gluconasturtiin has been researched along with methyl-jasmonate* in 2 studies
2 other study(ies) available for gluconasturtiin and methyl-jasmonate
Article | Year |
---|---|
Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.
Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P < .05). Male transgenic adenocarcinoma of mouse prostate (TRAMP) mice (n = 99) were randomized into three diet groups at 5-7 weeks of age: AIN-93G control, 10% standard broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies. Topics: Acetates; Animals; Brassica; Carcinogenesis; Cyclopentanes; Glucosinolates; Indoles; Male; Mice, Inbred C57BL; Oxylipins; Plant Extracts; Plant Growth Regulators; Prostatic Neoplasms | 2014 |
Influence of seasonal variation and methyl jasmonate mediated induction of glucosinolate biosynthesis on quinone reductase activity in broccoli florets.
Methyl jasmonate spray treatments (250 μM) were utilized to alter glucosinolate composition in the florets of the commercial broccoli F1 hybrids 'Pirate', 'Expo', 'Green Magic', 'Imperial', and 'Gypsy' grown in replicated field plantings in 2009 and 2010. MeJA treatment significantly increased glucoraphanin (11%), gluconasturtiin (59%), and neoglucobrassicin (248%) concentrations and their hydrolysis products including sulforaphane (152%), phenethyl isothiocyanate (318%), N-methoxyindole-3-carbinol (313%), and neoascorbigen (232%) extracted from florets of these genotypes over two seasons. Increased quinone reductase (QR) activity was significantly correlated with increased levels of sulforaphane, N-methoxyindole-3-carbinol, and neoascorbigen. Partitioning experiment-wide trait variances indicated that the variability in concentrations of sulforaphane (29%), neoascorbigen (48%), and QR activity (72%) was influenced by year-associated weather variables, whereas variation in neoglucobrassicin (63%) and N-methoxyindole-3-carbinol (46%) concentrations was primarily attributed to methyl jasmonate treatment. These results suggest that methyl jasmonate treatment can enhance QR inducing activity by increased hydrolysis of glucoraphanin into sulforaphane and the hydrolysis products of neoglucobrassicin. Topics: Acetates; Brassica; Cyclopentanes; Glucosinolates; Hydrolysis; Imidoesters; Indoles; Isothiocyanates; NAD(P)H Dehydrogenase (Quinone); Oximes; Oxylipins; Plant Proteins; Seasons; Sulfoxides | 2013 |