glucoerucin has been researched along with gluconasturtiin* in 2 studies
2 other study(ies) available for glucoerucin and gluconasturtiin
Article | Year |
---|---|
Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization.
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market. Topics: Anticarcinogenic Agents; Brassica; Dietary Supplements; Flowering Tops; Gene Expression Profiling; Genes, Plant; Glucose; Glucosinolates; Humans; Hydrolysis; Imidoesters; Metabolome; Microfluidic Analytical Techniques; NAD(P)H Dehydrogenase (Quinone); Plant Leaves; Plant Proteins; Plant Roots; RNA, Plant; Tissue Distribution | 2017 |
Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1--studies in cultured HT-29 cells and mice.
In this study, the effect of myrosinase-treated glucoerucin (GER+MYR), which releases the isothiocyanate (ITC) erucin, on heme oxygenase 1 (HO-1) gene expression and Nrf2 signaling was investigated in vitro in cultured cells and in vivo in mice. Treatment of HT-29 cells with GER+MYR resulted in a significant increase in the mRNA and protein levels of nuclear Nrf2 and HO-1. GER+MYR was more potent at enhancing the nuclear Nrf2 levels than were the following myrosinase-treated glucosinolates: sinigrin, glucoraphanin and gluconasturtiin, which are the precursors of allyl-ITC, R-sulforaphane and 2-phenylethyl ITC, respectively. GER+MYR also significantly induced HO-1 gene expression in the mouse intestinal mucosae and liver but not in the brain. Mechanistic studies suggest that GER+MYR induces Nrf2 via ERK1/2-, p38- and JNK-dependent signal transduction pathways. The GER+MYR-mediated increase in HO-1 expression is primarily attributable to p38 signaling. Topics: Animals; Brain; Diet, High-Fat; Female; Glucose; Glucosinolates; Glycoside Hydrolases; Heme Oxygenase-1; HT29 Cells; Humans; Imidoesters; Intestinal Mucosa; Intestines; Isothiocyanates; Liver; Membrane Proteins; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 3; Mustard Plant; NF-E2-Related Factor 2; Oximes; p38 Mitogen-Activated Protein Kinases; Plant Extracts; RNA, Messenger; Signal Transduction; Sulfoxides; Up-Regulation | 2015 |