glucobrassicin has been researched along with ethylene* in 2 studies
2 other study(ies) available for glucobrassicin and ethylene
Article | Year |
---|---|
Pre-harvest methyl jasmonate treatment enhances cauliflower chemoprotective attributes without a loss in postharvest quality.
Methyl jasmonate (MeJA) treatment can significantly increase glucosinolate (GS) concentrations in Brassica vegetables and potentially enhance anticancer bioactivity. Although MeJA treatment may promote ethylene biosynthesis, which can be detrimental to postharvest quality, there are no previous reports of its effect on cauliflower postharvest quality. To address this, cauliflower curds in field plots were sprayed with either 0.1 % Triton X-100 (control) or 500 μM MeJA solutions four days prior to harvest, then stored at 4 °C. Tissue subsamples were collected after 0, 10, 20, and 30 days of postharvest storage and assayed for visual color change, ethylene production, GS concentrations, and extract quinone reductase inductive activity. MeJA treatment increased curd GS concentrations of glucoraphanin, glucobrassicin, and neoglucobrassicin by 1.5, 2.4, and 4.6-fold over controls, respectively. MeJA treated cauliflower showed significantly higher quinone reductase activity, a biomarker for anticancer bioactivity, without reducing visual color and postharvest quality for 10 days at 4 °C storage. Topics: Acetates; Anticarcinogenic Agents; Brassica; Color; Cyclopentanes; Ethylenes; Food Handling; Food Quality; Glucosinolates; Imidoesters; Indoles; NAD(P)H Dehydrogenase (Quinone); Octoxynol; Oximes; Oxylipins; Plant Extracts; Sulfoxides | 2013 |
Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure.
The phytotoxin coronatine is a structural analog of octadecanoid signaling molecules, which are well known mediators of plant defense reactions. To isolate novel coronatine-regulated genes from Arabidopsis thaliana, differential mRNA display was performed. Transcript levels of CORI-7 (coronatine induced-7) were rapidly and transiently increased in coronatine-treated plants, and the corresponding cDNA was found to encode the sulfotransferase AtST5a. Likewise, upon wounding, an immediate and transient increase in AtST5a mRNA levels could be observed in both locally wounded and unwounded (systemic) leaves. Furthermore, application of octadecanoids and ethylene as compounds involved in plant wound defense reactions resulted in AtST5a gene activation, whereas pathogen defense-related signals (yeast elicitor and salicylic acid) were inactive. AtST5a and its close homologs AtST5b and AtST5c were purified as His6-tagged proteins from Escherichia coli. The three enzymes were shown to catalyze the final step in the biosynthesis of the glucosinolate (GS) core structure, the sulfation of desulfoglucosinolates (dsGSs). They accept a broad range of dsGSs as substrates. However, in a competitive situation, AtST5a clearly prefers tryptophan- and phenylalanine-derived dsGSs, whereas long chain dsGSs derived from methionine are the preferred substrates of AtST5b and AtST5c. Treatment of Arabidopsis plants with low concentrations of coronatine resulted in an increase in the amounts of specific GSs, primarily glucobrassicin and neoglucobrassicin. Hence, it is suggested that AtST5a is the sulfotransferase responsible for the biosynthesis of tryptophan-derived GSs in vivo. Topics: Amino Acids; Arabidopsis; Arabidopsis Proteins; Biochemical Phenomena; Biochemistry; Blotting, Northern; Catalysis; Chromatography, High Pressure Liquid; Cloning, Molecular; DNA, Complementary; Escherichia coli; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Glucosinolates; Indenes; Indoles; Models, Chemical; Phylogeny; Protein Structure, Tertiary; Reverse Transcriptase Polymerase Chain Reaction; Substrate Specificity; Sulfotransferases; Time Factors; Transcriptional Activation; Tryptophan | 2004 |