glucagon-like-peptide-1-(7-36) and exendin-(9-39)

glucagon-like-peptide-1-(7-36) has been researched along with exendin-(9-39)* in 3 studies

Other Studies

3 other study(ies) available for glucagon-like-peptide-1-(7-36) and exendin-(9-39)

ArticleYear
Lys9 for Glu9 substitution in glucagon-like peptide-1(7-36)amide confers dipeptidylpeptidase IV resistance with cellular and metabolic actions similar to those of established antagonists glucagon-like peptide-1(9-36)amide and exendin (9-39).
    Metabolism: clinical and experimental, 2004, Volume: 53, Issue:2

    The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLP-1's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His(7) and Ala(8), can greatly improve resistance to this enzyme. Little research has assessed what effect Glu(9)-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu(9) of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue, (Lys(9))GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1(9-36)amide. We investigated the in vivo antagonistic actions of (Lys(9))GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor.

    Topics: Adenylyl Cyclases; Amino Acid Substitution; Animals; Blood Glucose; Cells, Cultured; Cricetinae; Cyclic AMP; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases; Fibroblasts; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glutamic Acid; Humans; Hypoglycemic Agents; Insulin; Islets of Langerhans; Lung; Lysine; Mice; Mice, Obese; Peptide Fragments; Peptides; Receptors, Glucagon; Spectrometry, Mass, Electrospray Ionization

2004
Peptides that regulate food intake: glucagon-like peptide 1-(7-36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2003, Volume: 284, Issue:6

    Glucagon-like peptide 1-(7-36) amide (GLP-1) potently inhibits rat feeding behavior after central administration. Because third ventricular injection of GLP-1 appeared to be less effective than lateral ventricular injection, we have reexamined this issue. In addition, we attempted to identify brain regions other than the paraventricular nucleus of the hypothalamus that are sensitive toward GLP-1-induced feeding suppression. Finally, we examined the local role of endogenous GLP-1 by specific GLP-1 receptor blockade. After lateral ventricular injection, GLP-1 significantly inhibited food intake of 24-h-fasted rats in a dose-dependent fashion with a minimal effective dose of 1 microg. After third ventricular injection, GLP-1 (1 microg) was similarly effective in suppressing food intake, which extends previous findings. Intracerebral microinjections of GLP-1 significantly suppressed food intake in the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH), but not in the medial nucleus of the amygdala. The minimal effective dose of GLP-1 was 0.3 microg at LH sites and 1 microg at DMH or VMH sites. LH microinjections of exendin-(9-39) amide, a GLP-1 receptor antagonist, at 1 or 2.5 microg did not alter feeding behavior in 24-h-fasted rats. In satiated animals, however, a single LH injection of 1 microg exendin-(9-39) amide significantly augmented food intake, but only during the first 20 min (0.6 vs. 0.1 g). With three repeated injections of 2.5 microg exendin-(9-39) amide every 20 min, 1-h food intake was significantly increased by 300%. These data strongly support and extend the concept of GLP-1 as a physiological regulator of food intake in the hypothalamus.

    Topics: Animals; Dose-Response Relationship, Drug; Feeding Behavior; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Hypothalamic Area, Lateral; Hypothalamus, Middle; Male; Peptide Fragments; Rats; Rats, Wistar; Time Factors

2003
Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat.
    Endocrinology, 1997, Volume: 138, Issue:10

    Within the central nervous system, glucagon-like peptide-1-(7-36) amide (GLP-1) acts as a transmitter, inhibiting feeding and drinking behavior. Hypothalamic neuroendocrine neurons are centrally involved in the regulatory mechanisms controlling these behaviors, and high densities of GLP-1 binding sites are present in the rat hypothalamus. In the present study we have, over a period of 4 h, followed the effect of centrally injected GLP-1 on plasma levels of the neurohypophysial hormones vasopressin and oxytocin. Plasma levels of corticosterone and glucose were also followed across time after central administration of GLP-1. In conscious, freely moving, and unstressed rats, central injection of GLP-1 significantly elevated plasma levels of vasopressin 15 and 30 min after administration (basal, 0.8 +/- 0.2 pg/ml; 15 min, 7.5 +/- 2.0 pg/ml; 30 min, 5.6 +/- 1.1 pg/ml; mean +/- SEM) and elevated corticosterone 15 min after administration (52 +/- 13 vs. 447 +/- 108 ng/ml, basal vs. 15 min; mean +/- SEM). In contrast, plasma oxytocin levels were unaffected by intracerebroventricular (icv) injections of GLP-1 over a period of 4 h after the injection. The animals given a central injection of GLP-1 developed transient hypoglycemia 20 min after the injection, which was fully restored to normal levels at 30 min. Furthermore, we used c-fos immunocytochemistry as an index of stimulated neuronal activity. The distribution and quantity of GLP-1-induced c-fos immunoreactivity were evaluated in a number of hypothalamic neuroendocrine areas, including the magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) nuclei and the parvicellular neurons of the medial parvicellular subregion of the PVN. The number of c-fos-expressing nuclei in those areas was assessed 30, 60, and 90 min after icv administration of GLP-1. Intracerebroventricular injection of GLP-1 induced c-fos expression in the medial parvicellular subregion of the PVN as well as in magnocellular neurons of the PVN and SON. A slight induction of c-fos expression was seen in the arcuate nucleus and the nucleus of the solitary tract, including the area postrema. In contrast, the subfornical organ, which is a rostrally situated circumventricular organ, was free of c-fos-positive cells after central administration of GLP-1. When the GLP-1 antagonist exendin-(9-39) was given before the GLP-1, c-fos expression in these neuroendocrine areas was almost completely abolished, suggesting that the effect of GLP-

    Topics: Animals; Arcuate Nucleus of Hypothalamus; Blood Glucose; Corticosterone; Corticotropin-Releasing Hormone; Gene Expression Regulation; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Hypothalamo-Hypophyseal System; Hypothalamus; Immunohistochemistry; Injections, Intraventricular; Male; Neurons; Oxytocin; Paraventricular Hypothalamic Nucleus; Peptide Fragments; Phenotype; Pituitary-Adrenal System; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Supraoptic Nucleus; Time Factors; Vasopressins

1997