Page last updated: 2024-09-04

glucagon and dapagliflozin

glucagon has been researched along with dapagliflozin in 24 studies

Compound Research Comparison

Studies
(glucagon)
Trials
(glucagon)
Recent Studies (post-2010)
(glucagon)
Studies
(dapagliflozin)
Trials
(dapagliflozin)
Recent Studies (post-2010) (dapagliflozin)
26,0391,4983,0541,4783681,407

Protein Interaction Comparison

ProteinTaxonomyglucagon (IC50)dapagliflozin (IC50)
Sodium/glucose cotransporter 1Homo sapiens (human)1.1661
Sodium/glucose cotransporter 2Homo sapiens (human)0.0022
Sodium/myo-inositol cotransporter 2Homo sapiens (human)0.38
Solute carrier family 5 member 4Homo sapiens (human)0.0014

Research

Studies (24)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's14 (58.33)24.3611
2020's10 (41.67)2.80

Authors

AuthorsStudies
Abdul-Ghani, MA; Daniele, G; DeFronzo, RA; Eldor, R; Fiorentino, TV; Merovci, A; Norton, L; Perez, Z; Solis-Herrera, C; Tripathy, D; Xiong, J1
Abderrahmani, A; Beaucamps, C; Bonner, C; Delalleau, N; Deprez, B; Gmyr, V; Kerr-Conte, J; Malaisse, WJ; Moerman, E; Pattou, F; Popescu, I; Queniat, G; Sener, A; Staels, B; Thévenet, J1
Hattersley, AT; Thorens, B1
Naito, T; Okamoto, A; Sanada, H; Yokokawa, H1
Ahlstedt, I; El Hachmane, MF; Göpel, SO; Pedersen, MG1
Abdul-Ghani, M; Daniele, G; DeFronzo, RA; Eldor, R; Merovci, A; Norton, L; Solis-Herrera, C; Tripathy, D; Xiong, J1
Gilbert, JD; Goldenberg, RM; Perkins, BA; Verma, S; Zinman, B1
Dotta, F; Nigi, L; Rossi, C; Santini, E; Sebastiani, G; Solini, A1
Chen, S; Davidson, JA; Holland, WL; Lee, Y; Li, J; McCorkle, SK; Roth, MG; Scherer, PE; Unger, RH; Wang, MY; Wang, ZV; Yu, X1
Bjourson, AJ; Flatt, PR; Gault, VA; Millar, P; Moffett, RC; O'Kane, M; Parthsarathy, V; Pathak, N; Pathak, V1
Eckel, RH; Koh, KK; Lim, S1
Kakizaki, S; Kikuchi, O; Kitamura, T; Kobayashi, M; Kohno, D; Matsui, S; Sasaki, T; Suga, T; Takeuchi, K; Wada, E; Yamada, M; Yokota-Hashimoto, H1
Adam, J; Ashcroft, FM; Asterholm, IW; Benrick, A; Briant, LJB; Chibalina, MV; Gribble, FM; Hamilton, A; Hastoy, B; Knudsen, JG; Ramracheya, R; Reimann, F; Rorsman, NJG; Rorsman, P; Salehi, A; Spiliotis, II; Tarasov, A; Vergari, E; Wu, Y; Zhang, Q1
Bonner, C; Bousquet, C; Coddeville, A; Daoudi, M; Delalleau, N; Gmyr, V; Hubert, T; Kerr-Conte, J; Martineau, Y; Moerman, E; Pasquetti, G; Pattou, F; Quenon, A; Saponaro, C; Staels, B; Thévenet, J; Vantyghem, MC1
Acosta-Montalvo, A; Bonner, C; Cnop, M; Coddeville, A; Delalleau, N; Gmyr, V; Kerr-Conte, J; Moerman, E; Mühlemann, M; Pasquetti, G; Pattou, F; Piron, A; Saponaro, C; Staels, B; Thévenet, J1
Astapova, II; Campbell, JE; Capozzi, ME; Coch, RW; D'Alessio, DA; Douros, JD; El, K; Encisco, SE; Finan, B; Herman, MA; Koech, J; Sloop, KW; Wait, JB1
Flatt, PR; Irwin, N; Moffett, RC; Tanday, N1
Bottino, R; Bouchi, Y; Calcutt, MW; Dai, C; Dean, ED; Greiner, DL; Hart, NJ; Jacobson, DA; McGuinness, OP; Poffenberger, G; Powers, AC; Shostak, A; Shultz, LD; Walker, JT1
Cui, X; Feng, J; Gu, L; Hong, T; Lang, S; Le, Y; Liu, J; Wang, H; Wei, R; Wei, T; Yang, J; Yang, K1
Antoine, N; Augustin, R; Bensellam, M; Broca, C; Brusa, D; Chae, H; Gatineau, E; Gilon, P; Gribble, FM; Herrera, PL; Khattab, F; Klein, H; Lai, BK; Mark, M; Mayoux, E; Piemonti, L; Pieper, M; Reimann, F; Rita, N; Ruiz, L; Singh, B; Stierstorfer, B; Wojtusciszyn, A1
Amadid, H; Blond, MB; Bruhn, L; Clemmensen, KKB; Faerch, K; Holst, JJ; Jørgensen, ME; Karstoft, K; Persson, F; Quist, JS; Ried-Larsen, M; Torekov, SS; Vistisen, D; Wewer Albrechtsen, NJ1
Boeder, SC; Giovannetti, ER; Gregory, JM; Pettus, JH1
Adams, J; Agyin, C; Alatrach, M; Cersosimo, E; DeFronzo, RA; Gastaldelli, A; Lavryneko, O; Solis-Herrera, C; Triplitt, C1
Birnie, E; Burggraaf, B; Castro Cabezas, M; de Herder, WW; Fernández Arroyo, S; Huisbrink, J; Mulder, MT; Pouw, NMC; Rensen, PCN; van de Geijn, GM; van der Zwan, EM; van Vark-van der Zee, LC1

Reviews

2 review(s) available for glucagon and dapagliflozin

ArticleYear
Can the Combination of Incretin Agents and Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors Reconcile the Yin and Yang of Glucagon?
    Canadian journal of diabetes, 2017, Volume: 41, Issue:1

    Topics: Animals; Benzhydryl Compounds; Diabetes Mellitus; Drug Therapy, Combination; Glucagon; Glucosides; Humans; Hypoglycemic Agents; Incretins; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2017
Clinical implications of current cardiovascular outcome trials with sodium glucose cotransporter-2 (SGLT2) inhibitors.
    Atherosclerosis, 2018, Volume: 272

    Topics: Albuminuria; Atherosclerosis; Benzhydryl Compounds; Body Weight; Canagliflozin; Cardiovascular Diseases; Cardiovascular System; Glucagon; Glucagon-Like Peptides; Glucosides; Heart Failure; Hemodynamics; Humans; Hypoglycemic Agents; Ketones; Lipids; Liraglutide; Metabolic Syndrome; Metformin; Non-alcoholic Fatty Liver Disease; Osmosis; Risk Factors; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Treatment Outcome

2018

Trials

5 trial(s) available for glucagon and dapagliflozin

ArticleYear
Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.
    The Journal of clinical investigation, 2014, Volume: 124, Issue:2

    Topics: Benzhydryl Compounds; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Fasting; Glucagon; Glucose; Glucose Clamp Technique; Glucosides; Humans; Hyperglycemia; Insulin; Male; Metformin; Middle Aged; Muscles; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Sulfonylurea Compounds; Time Factors

2014
Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes.
    Diabetes care, 2016, Volume: 39, Issue:11

    Topics: Adolescent; Adult; Aged; Benzhydryl Compounds; Blood Glucose; Calorimetry, Indirect; Creatinine; Diabetes Mellitus, Type 2; Double-Blind Method; Enzyme Inhibitors; Glucagon; Glucosides; Humans; Insulin; Insulin Resistance; Ketones; Lipid Metabolism; Middle Aged; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Young Adult

2016
No effects of dapagliflozin, metformin or exercise on plasma glucagon concentrations in individuals with prediabetes: A post hoc analysis from the randomized controlled PRE-D trial.
    Diabetes, obesity & metabolism, 2021, Volume: 23, Issue:2

    Topics: Aged; Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Therapy, Combination; Female; Glucagon; Glucosides; Humans; Hypoglycemic Agents; Male; Metformin; Middle Aged; Prediabetic State

2021
SGLT2 Inhibition Increases Fasting Glucagon but Does Not Restore the Counterregulatory Hormone Response to Hypoglycemia in Participants With Type 1 Diabetes.
    Diabetes, 2022, 03-01, Volume: 71, Issue:3

    Topics: Adult; Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Type 1; Double-Blind Method; Fasting; Fatty Acids, Nonesterified; Female; Glucagon; Glucose Clamp Technique; Glucosides; Glycemic Control; Humans; Hypoglycemia; Insulin; Male; Middle Aged; Sodium-Glucose Transporter 2 Inhibitors

2022
Effects of dapagliflozin on postprandial lipid metabolism in type 2 diabetes mellitus.
    European journal of endocrinology, 2022, Apr-06, Volume: 186, Issue:5

    Topics: Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Type 2; Double-Blind Method; Glucagon; Glucosides; Humans; Hypoglycemic Agents; Inflammation; Insulin; Lipid Metabolism; Male

2022

Other Studies

17 other study(ies) available for glucagon and dapagliflozin

ArticleYear
Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion.
    Nature medicine, 2015, Volume: 21, Issue:5

    Topics: Administration, Oral; Adult; Animals; Benzhydryl Compounds; Blood Glucose; Cell Separation; Female; Flow Cytometry; Gene Expression Profiling; Gene Expression Regulation; Gene Silencing; Glucagon; Glucagon-Secreting Cells; Gluconeogenesis; Glucosides; Hepatocyte Nuclear Factor 4; Humans; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; RNA, Small Interfering; Sodium-Glucose Transporter 1; Sodium-Glucose Transporter 2

2015
Type 2 Diabetes, SGLT2 Inhibitors, and Glucose Secretion.
    The New England journal of medicine, 2015, Sep-03, Volume: 373, Issue:10

    Topics: Benzhydryl Compounds; Diabetes Mellitus, Type 2; Glucagon; Glucagon-Secreting Cells; Glucose; Glucosides; Humans; Sodium-Glucose Transporter 1; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2015
Changes in Levels of Biomarkers Associated with Adipocyte Function and Insulin and Glucagon Kinetics During Treatment with Dapagliflozin Among Obese Type 2 Diabetes Mellitus Patients.
    Drugs in R&D, 2016, Volume: 16, Issue:3

    Topics: Adipocytes; Adiponectin; Adult; Benzhydryl Compounds; Biomarkers; Blood Glucose; Body Weight; C-Reactive Protein; Creatinine; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Glucagon; Glucagon-Like Peptide-1 Receptor; Glucosides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Ketone Bodies; Male; Metformin; Middle Aged; Plasminogen Activator Inhibitor 1

2016
Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells.
    Scientific reports, 2016, 08-18, Volume: 6

    Topics: Animals; Benzhydryl Compounds; Cells, Cultured; Electric Stimulation; Glucagon; Glucagon-Secreting Cells; Glucose; Glucosides; Humans; Mice; Models, Theoretical; Sodium-Glucose Transporter 2

2016
Dapagliflozin modulates glucagon secretion in an SGLT2-independent manner in murine alpha cells.
    Diabetes & metabolism, 2017, Volume: 43, Issue:6

    Topics: Animals; Benzhydryl Compounds; Cell Line; Cells, Cultured; Gene Silencing; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Glucosides; Humans; Mice; Signal Processing, Computer-Assisted; Sodium-Glucose Transporter 1; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Somatostatin

2017
Dapagliflozin suppresses glucagon signaling in rodent models of diabetes.
    Proceedings of the National Academy of Sciences of the United States of America, 2017, 06-20, Volume: 114, Issue:25

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Down-Regulation; Glucagon; Glucagon-Secreting Cells; Glucose; Glucosides; Hypoglycemic Agents; Kidney Tubules, Proximal; Male; Mice; Rats; Rats, Sprague-Dawley; Rats, Zucker; Rodentia; Signal Transduction; Sodium-Glucose Transporter 2

2017
Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice.
    The Journal of endocrinology, 2017, Volume: 234, Issue:3

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Experimental; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucosides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Interleukin-6; Liraglutide; Male; Mice; Neurons; Neuroprotective Agents

2017
SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels.
    Molecular metabolism, 2019, Volume: 19

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Canagliflozin; Diabetes Mellitus; Diet, High-Fat; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Glucosides; Glycosuria; Hypoglycemic Agents; Insulin; Male; Mice; Mice, Inbred C57BL; Sodium-Glucose Transporter 1; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2019
Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion.
    Nature communications, 2019, 01-11, Volume: 10, Issue:1

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus; Female; Glucagon; Glucagon-Secreting Cells; Glucosides; Humans; Hypoglycemia; Insulin; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptor, Insulin; Receptors, Somatostatin; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Somatostatin

2019
The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release.
    Cell reports, 2019, 08-06, Volume: 28, Issue:6

    Topics: Animals; Benzhydryl Compounds; Diabetes Mellitus, Experimental; Glucagon; Glucosides; Humans; Liraglutide; Male; Mice; Somatostatin

2019
Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets.
    Diabetes, 2020, Volume: 69, Issue:5

    Topics: Antibodies; Benzhydryl Compounds; Blood Glucose; Databases, Nucleic Acid; Glucagon; Glucose; Glucosides; HEK293 Cells; Humans; Islets of Langerhans; RNA, Small Interfering; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2020
The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition.
    Diabetes, 2020, Volume: 69, Issue:5

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Epinephrine; Food Deprivation; Gene Expression Regulation; Glucagon; Glucosides; Insulin; Lipolysis; Mice; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2020
Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance.
    Biochemical pharmacology, 2020, Volume: 177

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Body Weight; Cell Transdifferentiation; Diabetes Mellitus, Experimental; Diet, High-Fat; Energy Intake; Glucagon; Glucagon-Secreting Cells; Glucosides; Homeodomain Proteins; Hydrocortisone; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Male; Mice, Transgenic; Sodium-Glucose Transporter 2 Inhibitors; Streptozocin; Trans-Activators

2020
Dapagliflozin Does Not Directly Affect Human α or β Cells.
    Endocrinology, 2020, 08-01, Volume: 161, Issue:8

    Topics: Adolescent; Adult; Animals; Benzhydryl Compounds; Cells, Cultured; Female; Glucagon; Glucagon-Secreting Cells; Glucosides; Heterografts; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Islets of Langerhans; Male; Mice; Mice, Inbred NOD; Mice, Transgenic; Middle Aged; Signal Transduction; Species Specificity; Young Adult

2020
Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice.
    Metabolism: clinical and experimental, 2020, Volume: 111

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; C-Peptide; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Endocrine Cells; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Secreting Cells; Glucose; Glucosides; Insulin; Insulin-Secreting Cells; Male; Mice; Proprotein Convertase 1; Regeneration; Sodium-Glucose Transporter 2 Inhibitors

2020
SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans.
    Molecular metabolism, 2020, Volume: 42

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Glucosides; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Islets of Langerhans; Mice; Pancreas; Rats; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2020
Dapagliflozin Impairs the Suppression of Endogenous Glucose Production in Type 2 Diabetes Following Oral Glucose.
    Diabetes care, 2022, 06-02, Volume: 45, Issue:6

    Topics: Benzhydryl Compounds; Blood Glucose; Diabetes Mellitus, Type 2; Exenatide; Glucagon; Glucose; Glucosides; Humans; Hypoglycemic Agents; Insulin; Sodium-Glucose Transporter 2 Inhibitors

2022