ginsenoside-rd has been researched along with protopanaxadiol* in 3 studies
3 other study(ies) available for ginsenoside-rd and protopanaxadiol
Article | Year |
---|---|
Protopanaxadiol ginsenoside Rd protects against NMDA receptor-mediated excitotoxicity by attenuating calcineurin-regulated DAPK1 activity.
Neuroprotective strategies in the treatment of stroke have been attracting a great deal of attentions. Our previous clinical and basic studies have demonstrated that protopanaxadiol ginsenoside-Rd (Rd), a monomer compound extracted from Panax ginseng or Panax notoginseng, has neuroprotective effects against ischemic stroke, probably due to its ability to block Ca Topics: Animals; Brain Ischemia; Calcineurin; Death-Associated Protein Kinases; Ginsenosides; Male; Neurons; Neuroprotective Agents; Panax; Phosphorylation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sapogenins; Signal Transduction; Stroke | 2020 |
Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng.
The rare ginsenoside Rg3 is attracting more attention because of its good physiological activity and urgent need. There are many pathways to obtain ginsenoside Rg3, including chemical and biological methods. Among these, the conversion of the protopanaxadiol-type ginsenosides by microbial hydrolysis is a trend due to its high efficiency and mild conditions. For effectively extracting from the other panaxadiol saponins, the conversion process for ginsenoside Rg3 was investigated using β-glycosidase-producing endophytic fungus in Panax ginseng in this study. The metabolic pathways are as follows: ginsenoside Rb1 → Gyp-XVII and ginsenoside Rb1 → ginsenoside Rd → ginsenoside Rg3. Phylogenetic analysis of 16S rDNA gene sequence, showed that GE 32 strain belonged to Flavobacterium species. These results suggest that the process of rare ginsenoside Rg3 production by endophytic bacteria GE 32 is efficient for the industrial production and application. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on cultivable β-glycosidase-producing endophytic bacteria from Panax ginseng. Flavobacterium sp. GE32 could convert major ginsenoside Rb1 into Gyp-XVII and minor ginsenoside Rg3. Strain GE 32 has potential to be applied on the preparation for minor ginsenoside Rg3 in pharmaceutical industry. Topics: Biotransformation; DNA, Ribosomal; Flavobacterium; Ginsenosides; Glycoside Hydrolases; Hydrolysis; Panax; Phylogeny; Sapogenins; Saponins | 2019 |
Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method.
The hydrolysis of protopanaxadiol-type saponin mixture by various glycoside hydrolases was examined. Among these enzymes, crude preparations of lactase from Aspergillus oryzae, beta-galactosidase from A. oryzae, and cellulase from Trichoderma viride were found to produce ginsenoside F(2) [3-O-(beta-D-glucopyranosyl)-20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol], compound K [20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol], and ginsenoside Rd {3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]-20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol}, respectively, from protopanaxadiol-type saponin mixture in large quantities. Moreover, the crude preparation of lactase from Penicillium sp. having a high producing activity of ginsenoside Rh(1) (6-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol) from protopanaxatriol-type saponin mixture gave ginsenoside Rd as a main product, ginsenoside Rg(3) {3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]-20(S)-protopanaxadiol}, and compound K from protopanaxadiol-type saponin mixture. The hydrolytic pathways of ginsenosides Rb(1), Rb(2), and Rc to ginsenosides Rd, Rg(3), and F(2), and compound K by crude preparations of four glycoside hydrolases were also studied. This is the first report on the enzymatic preparation of an intestinal bacterial metabolite, ginsenoside F(2), in quantity, and a considerable amount of a minor saponin, ginsenoside Rg(3), from a protopanaxadiol-type saponin mixture. Topics: Aspergillus oryzae; beta-Galactosidase; Cellulase; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Ginsenosides; Glycoside Hydrolases; Lactase; Plants, Medicinal; Sapogenins; Saponins; Substrate Specificity; Trichoderma; Triterpenes | 2007 |