ginsenoside-m1 has been researched along with tocophersolan* in 2 studies
2 other study(ies) available for ginsenoside-m1 and tocophersolan
Article | Year |
---|---|
Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo.
The roles of ginsenoside compound K (CK) in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP)/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS) mixed micelles were prepared as a delivery system to increase the absorption and targeted antitumor effect of CK. Consequently, the solubility of CK increased from 35.2±4.3 to 1,463.2±153.3 μg/mL. Furthermore, in an in vitro A549 cell model, CK AP/TPGS mixed micelles significantly inhibited cell growth, induced G0/G1 phase cell cycle arrest, induced cell apoptosis, and inhibited cell migration compared to free CK, all indicating that the developed micellar delivery system could increase the antitumor effect of CK in vitro. Both in vitro cellular fluorescence uptake and in vivo near-infrared imaging studies indicated that AP/TPGS mixed micelles can promote cellular uptake and enhance tumor targeting. Moreover, studies in the A549 lung cancer xenograft mouse model showed that CK AP/TPGS mixed micelles are an efficient tumor-targeted drug delivery system with an effective antitumor effect. Western blot analysis further confirmed that the marked antitumor effect in vivo could likely be due to apoptosis promotion and P-gp efflux inhibition. Therefore, these findings suggest that the AP/TPGS mixed micellar delivery system could be an efficient delivery strategy for enhanced tumor targeting and antitumor effects. Topics: A549 Cells; Animals; Apoptosis; Ascorbic Acid; Cell Cycle; Cell Movement; Drug Delivery Systems; Endocytosis; Ginsenosides; Humans; In Situ Nick-End Labeling; Lung Neoplasms; Mice, Nude; Micelles; Succinates; Tumor Burden; Vitamin E | 2017 |
TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo.
This work aimed at preparing ginsenoside compound K (GCK)-loaded liposomes modified with TPGS (GCKT-liposomes) to enhance solubility and targeting capability of GCK, as well as inhibit the efflux of GCK from tumour cells.. GCKT-liposomes were prepared by the thin-film hydration method and characterized by particle size, polydispersity, zeta potential and drug encapsulation efficiency. A549 cells were used as antitumour cell model to access the cellular uptake of the GCK and perform its antitumour function. The enhancement of in vivo antitumour efficacy of GCKT-liposomes was evaluated by nude mice bearing tumour model.. The results showed that GCKT-liposomes achieved a comparatively high drug loading efficiency and reasonable particle size at the ratio of 7 : 3 (phospholipid: TPGS). The in vitro release demonstrated that the dissolution of GCK was remarkably improved by entrapping it into liposomes. In addition, GCKT-liposomes exhibited a great hypersensitizing effect on A549 cells, and the cellular uptake was enhanced. Compared with free GCK, the IC50 of GCKT-liposomes was significantly reduced (16.3 ± 0.8 vs 24.9 ± 1.0 μg/ml). In vivo antitumour assay also indicated that GCKT-liposomes achieved higher antitumour efficacy (67.5 ± 0.5 vs 40.8 ± 0.7%).. The novel GCKT-liposomes significantly improved the antitumour efficacy of GCK. Topics: A549 Cells; Animals; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Drug Carriers; Ginsenosides; Liposomes; Male; Mice, Nude; Panax; Phospholipids; Phytotherapy; Plant Extracts; Polyethylene Glycols; Vitamin E | 2016 |