ginkgolic-acid has been researched along with n-hexane* in 2 studies
2 other study(ies) available for ginkgolic-acid and n-hexane
Article | Year |
---|---|
Potent α-glucosidase inhibitors isolated from Ginkgo biloba leaves.
In vitro α-glucosidase inhibitory activity of Ginkgo biloba leaves was investigated. The inhibitory activity of methanol extracts from yellow and green leaves was 13.8 and 40.1 μg mL(-1), respectively. Each methanol extract was separated into its respective fraction by solvent-solvent extraction with n-hexane, chloroform, ethyl acetate and n-butanol. The n-hexane fractions (in both methanol extracts from green and yellow leaves) exhibited high α-glucosidase inhibitory activity with IC50 values of 13.6 and 13.4 μg mL(-1), respectively. Further fractionation of the n-hexane fractions by silica gel column chromatography gave the most active fraction which was identified as ginkgolic acid (C13:0) and a mixture (C13:0, C15:0, C15: 1, C17:1 and C17:2). Ginkgolic acid (C13:0) exhibited the highest α-glucosidase inhibitory activity. This is the first study to successfully isolate ginkgolic acids as α-glucosidase inhibitors. Topics: 1-Butanol; Acetates; Chemical Fractionation; Chloroform; Gas Chromatography-Mass Spectrometry; Ginkgo biloba; Glycoside Hydrolase Inhibitors; Hexanes; Methanol; Molecular Structure; Phytotherapy; Plant Extracts; Plant Leaves; Plants, Medicinal; Salicylates; Solvents | 2014 |
Inhibition of fatty acid synthase by ginkgolic acids from the leaves of Ginkgo biloba and their cytotoxic activity.
Fatty acid synthase (FAS) has been proposed to be a new drug target for the development of anticancer agents because of the significant difference in expression of FAS between normal and tumour cells. Since a n-hexane-soluble extract from Ginkgo biloba was demonstrated to inhibit FAS activity in our preliminary test, we isolated active compounds from the n-hexane-soluble extract and evaluated their cytotoxic activity in human cancer cells. Three ginkgolic acids 1-3 isolated from the n-hexane-soluble extract inhibited the enzyme with IC(50) values 17.1, 9.2 and 10.5 µM, respectively, and they showed cytotoxic activity against MCF-7 (human breast adenocarcinoma), A549 (human lung adenocarcinoma) and HL-60 (human leukaemia) cells. Our findings suggest that alkylphenol derivatives might be a new type of FAS inhibitor with cytotoxic activity. Topics: Adenocarcinoma; Adenocarcinoma of Lung; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Cell Line, Tumor; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Fatty Acid Synthases; Female; Ginkgo biloba; Hexanes; HL-60 Cells; Humans; Inhibitory Concentration 50; Lung Neoplasms; Molecular Structure; Plant Extracts; Plant Leaves; Salicylates | 2013 |