gilteritinib and midostaurin

gilteritinib has been researched along with midostaurin* in 23 studies

Reviews

13 review(s) available for gilteritinib and midostaurin

ArticleYear
The safety profile of FLT3 inhibitors in the treatment of newly diagnosed or relapsed/refractory acute myeloid leukemia.
    Expert opinion on drug safety, 2021, Volume: 20, Issue:7

    FLT3 inhibitors are important drugs in the therapy of FLT3 positive acute myeloid leukemia (AML). Midostaurin was registered in combination with chemotherapy to treat newly diagnosed AML. Gilteritinib and quizartinib demonstrate effectiveness in a randomized trial in relapsed/refractory AML. Several promising FLT3 inhibitors are being evaluated in clinical research.. This review will report the safety of FLT3 inhibitors that are registered for acute myeloid leukemia induction and rescue therapy.. In the near future, it is possible that all the FLT3 positive non M3-AML patients will receive a FLT3 inhibitor. Therapy adherence and strategies to mitigate adverse events must be pursued. The treatment with FLT3 inhibitors may be optimized in terms of toxicities with a rational evaluation of antifungal prophylaxis and concomitant therapy, cardiology monitoring, and keeping in mind rare adverse events. Future studies on unfit patients, special populations, and maintenance settings are warranted, together with post-market studies and real-life experiences. Whenever new FLT3 inhibitors will come to the clinic, we could face a scenario in which profound knowledge of effectiveness, toxicities, and off-target effects will be relevant to choose the best drug for each patient.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzothiazoles; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Randomized Controlled Trials as Topic; Staurosporine

2021
FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions.
    Leukemia, 2020, Volume: 34, Issue:3

    The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in approximately one third of patients with acute myeloid leukemia (AML), either by internal tandem duplications (FLT3-ITD), or by a point mutation mainly involving the tyrosine kinase domain (FLT3-TKD). Patients with FLT3-ITD have a high risk of relapse and low cure rates. Several FLT3 tyrosine kinase inhibitors have been developed in the last few years with variable kinase inhibitory properties, pharmacokinetics, and toxicity profiles. FLT3 inhibitors are divided into first generation multi-kinase inhibitors (such as sorafenib, lestaurtinib, midostaurin) and next generation inhibitors (such as quizartinib, crenolanib, gilteritinib) based on their potency and specificity of FLT3 inhibition. These diverse FLT3 inhibitors have been evaluated in myriad clinical trials as monotherapy or in combination with conventional chemotherapy or hypomethylating agents and in various settings, including front-line, relapsed or refractory disease, and maintenance therapy after consolidation chemotherapy or allogeneic stem cell transplantation. In this practical question-and-answer-based review, the main issues faced by the leukemia specialists on the use of FLT3 inhibitors in AML are addressed.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; DNA Methylation; Enzyme Inhibitors; fms-Like Tyrosine Kinase 3; Furans; Humans; Leukemia, Myeloid, Acute; Mutation; Neoplasm Recurrence, Local; Phenylurea Compounds; Piperidines; Prognosis; Pyrazines; Randomized Controlled Trials as Topic; Sorafenib; Staurosporine; Treatment Outcome

2020
Overcoming Resistance to FLT3 Inhibitors in the Treatment of
    International journal of molecular sciences, 2020, Feb-24, Volume: 21, Issue:4

    Acute myeloid leukaemia (AML) carrying internal tandem duplication (ITD) of Fms-Like Tyrosine kinase 3 (

    Topics: Aniline Compounds; Antineoplastic Combined Chemotherapy Protocols; Drug Resistance, Neoplasm; Drug Therapy, Combination; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Protein Kinase Inhibitors; Pyrazines; Staurosporine

2020
Combination treatment with CPX-351 and midostaurin in patients with secondary acute myeloid leukaemia that are FLT3 mutated: three cases and review of literature.
    British journal of haematology, 2020, Volume: 190, Issue:3

    Topics: Aged; Allografts; Anemia, Refractory, with Excess of Blasts; Aniline Compounds; Antineoplastic Combined Chemotherapy Protocols; Azacitidine; Breast Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Clinical Trials, Phase III as Topic; Cytarabine; Daunorubicin; Fatal Outcome; Female; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Liposomes; Male; Middle Aged; Myelodysplastic Syndromes; Neoplasm, Residual; Neoplasms, Radiation-Induced; Oncogene Proteins, Fusion; Peripheral Blood Stem Cell Transplantation; Point Mutation; Protein Kinase Inhibitors; Pyrazines; Remission Induction; Salvage Therapy; Staurosporine; Sulfonamides

2020
<Editors' Choice> How to improve outcomes of elderly patients with acute myeloid leukemia: era of excitement.
    Nagoya journal of medical science, 2020, Volume: 82, Issue:2

    Among elderly patients with acute myeloid leukemia (AML), especially those who are unfit for intensive chemotherapy, a policy of reduced-intensity chemotherapy or conservative observation has been chosen, resulting in unmet medical needs. Clinical trials using anticancer drugs including antimetabolites or drugs targeted to cell cycle-related molecules failed to show superiority over conventional treatments. Recently, drugs targeted to Bcl-2, SMO, FLT3, and IDH1/2 have been shown to prolong overall survival alone or in combination with reduced-intensity chemotherapy. These treatments are likely to reshape the therapeutic landscape of AML, which will be personalized for individual patients based on leukemia genetics.

    Topics: Aged; Aged, 80 and over; Aminopyridines; Aniline Compounds; Antineoplastic Agents; Arsenic Trioxide; Azacitidine; Benzimidazoles; Bridged Bicyclo Compounds, Heterocyclic; Decitabine; fms-Like Tyrosine Kinase 3; Humans; Isocitrate Dehydrogenase; Leukemia, Myeloid, Acute; Molecular Targeted Therapy; Phenylurea Compounds; Precision Medicine; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Smoothened Receptor; Staurosporine; Sulfonamides; Survival Rate; Tretinoin; Triazines

2020
FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives.
    Minerva medica, 2020, Volume: 111, Issue:5

    Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; Drug Resistance, Multiple; Drug Resistance, Neoplasm; fms-Like Tyrosine Kinase 3; Forecasting; Furans; Hematopoietic Stem Cell Transplantation; Humans; Imidazoles; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Mutation; Phenylurea Compounds; Piperidines; Point Mutation; Protein Kinase Inhibitors; Pyrazines; Pyridazines; Recurrence; Sorafenib; Staurosporine

2020
Midostaurin in acute myeloid leukemia: current evidence and practical considerations in routine clinical use.
    Minerva medica, 2020, Volume: 111, Issue:5

    Mutation within the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent genetic alterations in acute myeloid leukemia. A high mutation fraction of FLT3-ITD molecules on the surface of leukemia cells is associated with short remissions and overall adverse outcomes in AML. In this article we summarize the clinical trial data of midostaurin - one of the FLT3 inhibitors. We review its use in various combinations both in relapsed/refractory acute myeloid leukemia as well as in the newly diagnosed patients and recollect the evidence of its use as maintenance therapy post allogenic stem cell transplantation. We enumerate the practical issues faced in the use of midostaurin like antifungal prophylaxis, dosage of concomitant chemotherapy agents as well as available data on sequencing of the FLT3 inhibitors. Lastly, we provide our perspective of the future directions for FLT3 inhibition especially midostaurin, the underlying resistance mechanisms and the need for standardization of the FLT3 tests.

    Topics: Aniline Compounds; Anthracyclines; Antifungal Agents; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Clinical Trials as Topic; Cytarabine; Cytochrome P-450 CYP3A Inhibitors; Drug Interactions; Echinocandins; fms-Like Tyrosine Kinase 3; Forecasting; Hematopoietic Stem Cell Transplantation; Humans; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Mutation; Mycoses; Protein Kinase Inhibitors; Pyrazines; Randomized Controlled Trials as Topic; Recurrence; Staurosporine; Triazoles

2020
Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments.
    Cells, 2020, 11-17, Volume: 9, Issue:11

    Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we still observe primary and secondary resistance to TKI both in monotherapy and in combination with chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and reducing the development of resistance in AML. Tailored treatment approaches that address additional molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.

    Topics: Aniline Compounds; Antineoplastic Agents; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Protein Kinase Inhibitors; Pyrazines; Staurosporine

2020
Will new agents impact survival in AML?
    Best practice & research. Clinical haematology, 2019, Volume: 32, Issue:4

    In recent years, several drugs-including midostaurin, gilteritinib, and gemtuzumab ozogamicin, to name a few-have been approved or reapproved in the United States to treat patients with acute myeloid leukemia (AML). Yet survival rates for younger patients had improved with chemotherapy alone even before the approvals of these new agents. This begs the question whether the new therapies will actually have a positive impact on survival. The 5-year survival rate for older patients has also risen, again without the addition of these new agents. The challenge will be to incorporate new therapies and use them where they will have the greatest impact-major work for clinicians and researchers alike.

    Topics: Aniline Compounds; Disease-Free Survival; Drug Approval; Gemtuzumab; Humans; Leukemia, Myeloid, Acute; Pyrazines; Staurosporine; Survival Rate; United States

2019
The growing landscape of FLT3 inhibition in AML.
    Hematology. American Society of Hematology. Education Program, 2019, 12-06, Volume: 2019, Issue:1

    Midostaurin and gilteritinib are FLT3 inhibitors that have been recently approved for use in FLT3-mutant acute myeloid leukemia (AML). These approved drugs represent a new standard of care for patients with FLT3 mutations in both the first-line and salvage settings. The success of midostaurin used in combination with induction chemotherapy has prompted exploration of newer, more potent and targeted inhibitors (including gilteritinib) in the first-line setting in combination with chemotherapy. At the same time, the success of gilteritinib and other newer FLT3 inhibitors as monotherapy in the salvage setting has been tempered by the development of resistance because of diverse mechanisms. Investigational strategies that incorporate FLT3 inhibitors in combination with hypomethylating agents and as maintenance therapy after allogeneic stem cell transplantation have shown promise. Other novel combination strategies are also undergoing clinical investigation. In this article, we review the current landscape of approved and investigational FLT3 inhibitors in AML, including the current standard of care and investigational strategies.

    Topics: Allografts; Aniline Compounds; Female; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Middle Aged; Pyrazines; Staurosporine; Stem Cell Transplantation

2019
New drugs creating new challenges in acute myeloid leukemia.
    Genes, chromosomes & cancer, 2019, Volume: 58, Issue:12

    The therapeutic landscape is rapidly changing, with eight new drugs approved by the Food and Drug Administration within the last 2 years, including midostaurin and gilteritinib for FLT3 mutant newly diagnosed and relapsed/refractory (R/R) acute myeloid leukemia (AML), respectively; CPX-351 (liposomal cytarabine and daunorubicin) for therapy-related AML and AML with myelodysplasia-related changes; gemtuzumab ozogamicin (anti-CD33 monoclonal antibody conjugated with calicheamicin) for newly diagnosed and R/R CD33-positive AML; enasidenib and ivosidenib for IDH2 and IDH1 mutant R/R AML, respectively. Novel therapies have also emerged for newly diagnosed AML in adults who are age 75 years or older, or who have comorbidities that preclude the use of intensive induction chemotherapy. These include venetoclax (BCL-2 inhibitor) in combination with hypomethylating agents (azacitidine or decitabine) or low-dose cytarabine (LDAC), and glasdegib (sonic hedgehog pathway inhibitor) in combination with LDAC. This flurry of new drug approvals has markedly altered the treatment landscape in AML and provided new opportunities, as well as new challenges for treating clinicians. This review will focus on how these drugs might shape clinical practice and the hurdles likely to be faced by new therapies seeking entry into this dynamic and rapidly changing therapeutic landscape.

    Topics: Aminopyridines; Aniline Compounds; Cytarabine; Daunorubicin; fms-Like Tyrosine Kinase 3; Gemtuzumab; Glycine; Humans; Leukemia, Myeloid, Acute; Pyrazines; Pyridines; Staurosporine; Triazines; United States; United States Food and Drug Administration

2019
Availability of FLT3 inhibitors: how do we use them?
    Blood, 2019, 08-29, Volume: 134, Issue:9

    The natural history of FLT3-mutated AML is changing after the approval of midostaurin for frontline therapy and gilteritinib for relapsed or refractory patients. Recently reported, positive randomized trials of the drugs gilteritinib, quizartinib, and sorafenib predict even wider use of FLT3 inhibitors going forward. FLT3 inhibitors now emerge as an important, if not indispensable, part of therapy for a large subset of high-risk patients.

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Benzothiazoles; Clinical Trials as Topic; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Sorafenib; Staurosporine

2019
Clinical considerations for the use of FLT3 inhibitors in acute myeloid leukemia.
    Critical reviews in oncology/hematology, 2019, Volume: 141

    Internal tandem duplications and tyrosine kinase mutations in the fms-like tyrosine kinase 3 (FLT3) receptor can occur in acute myeloid leukemia (AML) and portend a poor prognosis. Midostaurin, a multikinase inhibitor that targets FLT3, demonstrated a survival benefit in FLT3-mutated AML in combination with front-line chemotherapy. Despite this advancement, the use of FLT3 inhibitors in clinical practice is complicated by significant drug-drug interactions and uncertainty about optimal timing, duration, and sequencing of therapy. As monotherapy, the utility of FLT3 inhibitors was initially limited by incomplete and transient clinical responses and the development of acquired resistance. This led to the development of more potent and selective FLT3 inhibitors designed to overcome common resistance mechanisms. One of these second generation FLT3 inhibitors, gilteritinib, is now FDA-approved for the treatment of relapsed or refractory AML. Now that multiple FLT3 inhibitors are commercially available, it is important to further delineate the role of these agents in the AML population. This review aims to provide a comprehensive overview of the role of FLT3 inhibitors in AML and apply the current literature to clinical practice.

    Topics: Aniline Compounds; Antineoplastic Agents; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Protein Kinase Inhibitors; Pyrazines; Staurosporine

2019

Other Studies

10 other study(ies) available for gilteritinib and midostaurin

ArticleYear
Gilteritinib activity in refractory or relapsed FLT3-mutated acute myeloid leukemia patients previously treated by intensive chemotherapy and midostaurin: a study from the French AML Intergroup ALFA/FILO.
    Leukemia, 2023, Volume: 37, Issue:1

    The real-world efficacy and safety of gilteritinib was assessed in an ambispective study that included 167 R/R FLT3-mutated AML patients. Among them, 140 received gilteritinib as single agent (cohort B), including 67 previously treated by intensive chemotherapy and midostaurin (cohort C). The main differences in patient characteristics in this study compared to the ADMIRAL trial were ECOG ≥ 2 (83.6% vs. 16.6%), FLT3-TKD mutation (21.0% vs. 8.5%), primary induction failure (15.0% vs. 40.0%) and line of treatment (beyond 2nd in 37.1% vs. 0.0%). The rates of composite complete remission, excluding those that occurred after hematopoietic stem cell transplantation (HSCT), were similar at respectively 25.4% and 27.5% in cohorts B and C. Median overall survival (OS) for these two groups was also similar at respectively 6.4 and 7.8 months. Multivariate analyses for prognostic factors associated with OS identified female gender (HR 1.61), adverse cytogenetic risk (HR 2.52), and allogenic HSCT after gilteritinib (HR 0.13). Although these patients were more heavily pretreated, these real-world data reproduce the results of ADMIRAL and provide new insights into the course of patients previously treated by intensive chemotherapy and midostaurin and beyond the 2nd line of treatment who can benefit from treatment in an outpatient setting.

    Topics: Female; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Staurosporine

2023
Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib.
    Blood cancer journal, 2022, 05-30, Volume: 12, Issue:5

    The fms-like tyrosine kinase 3 (FLT3) inhibitor gilteritinib is indicated for relapsed or refractory (R/R) FLT3-mutated acute myeloid leukemia (AML), based on its observed superior response and survival outcomes compared with salvage chemotherapy (SC). Frontline use of FLT3 tyrosine kinase inhibitors (TKIs) midostaurin and sorafenib may contribute to cross-resistance to single-agent gilteritinib in the R/R AML setting but has not been well characterized. To clarify the potential clinical impact of prior TKI use, we retrospectively compared clinical outcomes in patients with R/R FLT3-mutated AML in the CHRYSALIS and ADMIRAL trials who received prior midostaurin or sorafenib against those without prior FLT3 TKI exposure. Similarly high rates of composite complete remission (CRc) were observed in patients who received a FLT3 TKI before gilteritinib (CHRYSALIS, 42%; ADMIRAL, 52%) and those without prior FLT3 TKI therapy (CHRYSALIS, 43%; ADMIRAL, 55%). Among patients who received a prior FLT3 TKI in ADMIRAL, a higher CRc rate (52%) and trend toward longer median overall survival was observed in the gilteritinib arm versus the SC arm (CRc = 20%; overall survival, 5.1 months; HR = 0.602; 95% CI: 0.299, 1.210). Remission duration was shorter with prior FLT3 TKI exposure. These findings support gilteritinib for FLT3-mutated R/R AML after prior sorafenib or midostaurin.

    Topics: Aniline Compounds; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Protein Kinase Inhibitors; Pyrazines; Retrospective Studies; Sorafenib; Staurosporine

2022
How I treat acute myeloid leukemia in the era of new drugs.
    Blood, 2020, 01-09, Volume: 135, Issue:2

    The acute myeloid leukemia (AML) treatment landscape has changed substantially since 2017. New targeted drugs have emerged, including venetoclax to target B-cell lymphoma 2, midostaurin and gilteritinib to target FLT3, and ivosidenib and enasidenib to target mutant isocitrate dehydrogenase 1 and 2, respectively. Other additions include reapproval of gemtuzumab ozogomycin to target CD33, glasdegib to target the hedgehog pathway, and a liposomal formulation of daunorubicin and cytarabine (CPX-351). Genomically heterogeneous AML has a tendency to evolve, particularly under selective treatment pressure. For decades, treatment decisions have largely centered around chemotherapy drug intensity. Physicians now have access to an increasing number of drugs with novel mechanisms of action and distinctive side-effect profiles. Key issues faced by hematologists in this era of new drugs include (1) the timely identification of actionable mutations at diagnosis and at relapse; (2) deciding which drug to use among several therapeutic options; and (3) increasing awareness of how to anticipate, mitigate, and manage common complications associated with these new agents. This article will use 3 case presentations to discuss some of the new treatment challenges encountered in AML management, with the goal of providing practical guidance to aid the practicing physician.

    Topics: Adult; Aged; Aminopyridines; Aniline Compounds; Antineoplastic Agents; Biomarkers, Tumor; Bridged Bicyclo Compounds, Heterocyclic; Cytarabine; Daunorubicin; Female; fms-Like Tyrosine Kinase 3; Glycine; Humans; Isocitrate Dehydrogenase; Leukemia, Myeloid, Acute; Male; Molecular Targeted Therapy; Mutation; Prognosis; Pyrazines; Pyridines; Sialic Acid Binding Ig-like Lectin 3; Staurosporine; Sulfonamides; Triazines

2020
Effects of the multi-kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia.
    Journal of cellular and molecular medicine, 2020, Volume: 24, Issue:5

    Recently, several targeted agents have been developed for specific subsets of patients with acute myeloid leukaemia (AML), including midostaurin, the first FDA-approved FLT3 inhibitor for newly diagnosed patients with FLT3 mutations. However, in the initial Phase I/II clinical trials, some patients without FLT3 mutations had transient responses to midostaurin, suggesting that this multi-targeted kinase inhibitor might benefit AML patients more broadly. Here, we demonstrate submicromolar efficacy of midostaurin in vitro and efficacy in vivo against wild-type (wt) FLT3-expressing AML cell lines and primary cells, and we compare its effectiveness with that of other FLT3 inhibitors currently in clinical trials. Midostaurin was found to synergize with standard chemotherapeutic drugs and some targeted agents against AML cells without mutations in FLT3. The mechanism may involve, in part, the unique kinase profile of midostaurin that includes proteins implicated in AML transformation, such as SYK or KIT, or inhibition of ERK pathway or proviability signalling. Our findings support further investigation of midostaurin as a chemosensitizing agent in AML patients without FLT3 mutations.

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Apoptosis; Benzimidazoles; Benzothiazoles; Cell Line, Tumor; Cell Proliferation; Drug Synergism; fms-Like Tyrosine Kinase 3; Gene Expression Regulation, Neoplastic; Humans; Leukemia, Myeloid, Acute; Mice; Mutation; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrazines; Sorafenib; Staurosporine; Syk Kinase

2020
Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia.
    Journal of hematology & oncology, 2020, 10-19, Volume: 13, Issue:1

    Acute myeloid leukemia (AML) is a heterogeneous and complex disease, and treatments for this disease have not been curative for the majority of patients. In younger patients, internal tandem duplication of FLT3 (FLT3-ITD) is a common mutation for which two inhibitors (midostaurin and gilteritinib) with varied potency and specificity for FLT3 are clinically approved. However, the high rate of relapse or failed initial response of AML patients suggests that the addition of a second targeted therapy may be necessary to improve efficacy. Using an unbiased large-scale CRISPR screen, we genetically identified BCL2 knockout as having synergistic effects with an approved FLT3 inhibitor. Here, we provide supportive studies that validate the therapeutic potential of the combination of FLT3 inhibitors with venetoclax in vitro and in vivo against multiple models of FLT3-ITD-driven AML. Our unbiased approach provides genetic validation for co-targeting FLT3 and BCL2 and repurposes CRISPR screening data, utilizing the genome-wide scope toward mechanistic understanding.

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; CRISPR-Cas Systems; Female; fms-Like Tyrosine Kinase 3; Gene Knockout Techniques; Genetic Therapy; Humans; Leukemia, Myeloid, Acute; Mice, SCID; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Staurosporine; Sulfonamides

2020
Improving Response to FLT3 Inhibitors-BCL2 the Rescue?
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2019, 11-15, Volume: 25, Issue:22

    As single agents, FLT3 inhibitors are active in FLT3-mutated acute myeloid leukemia (AML) therapy but not curative. The BCL2 inhibitor, venetoclax, enhances responses to low intensity AML chemotherapy but its activity is limited by MCL1 upregulation. FLT3 inhibitors downregulate MCL1 and synergize with venetoclax in preclinical AML models.

    Topics: Aniline Compounds; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Staurosporine

2019
Closing in on targeted therapy for acute myeloid leukaemia.
    The Lancet. Haematology, 2019, Volume: 6, Issue:1

    Topics: Aniline Compounds; Antineoplastic Agents; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Molecular Targeted Therapy; Mutation; Protein Kinase Inhibitors; Pyrazines; Staurosporine

2019
Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies.
    British journal of haematology, 2019, Volume: 187, Issue:4

    Mutations in two type-3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3-positive AML and for KIT D816V-positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild-type (wt) FLT3, FLT3-internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3-ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c-CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Cell Line, Tumor; Drug Screening Assays, Antitumor; fms-Like Tyrosine Kinase 3; Hematologic Neoplasms; Humans; Mutant Proteins; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-cbl; Proto-Oncogene Proteins c-kit; Pyrazines; Pyrazoles; Pyrroles; Sorafenib; Staurosporine; Triazines

2019
Inhibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2019, 11-15, Volume: 25, Issue:22

    To investigate the efficacy of the combination of the FLT3 inhibitors midostaurin or gilteritinib with the Bcl-2 inhibitor venetoclax in FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) and the underlying molecular mechanism.. Using both FLT3-ITD cell lines and primary patient samples, Annexin V-FITC/propidium iodide staining and flow cytometry analysis were used to quantify cell death induced by midostaurin or gilteritinib, alone or in combination with venetoclax. Western blot analysis was performed to assess changes in protein expression levels of members of the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, and members of the Bcl-2 family of proteins. The MV4-11-derived xenograft mouse model was used to assess. The combination of midostaurin or gilteritinib with venetoclax potently and synergistically induces apoptosis in FLT3-ITD AML cell lines and primary patient samples. The FLT3 inhibitors induced downregulation of Mcl-1, enhancing venetoclax activity. Phosphorylated-ERK expression is induced by venetoclax but abolished by the combination of venetoclax with midostaurin or gilteritinib. Simultaneous downregulation of Mcl-1 by midostaurin or gilteritinib and inhibition of Bcl-2 by venetoclax results in "free" Bim, leading to synergistic induction of apoptosis.. Inhibition of Bcl-2 via venetoclax synergistically enhances the efficacy of midostaurin and gilteritinib in FLT3-mutated AML.

    Topics: Aniline Compounds; Animals; Apoptosis; Biomarkers, Tumor; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Disease Models, Animal; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; fms-Like Tyrosine Kinase 3; Gene Duplication; Gene Expression Regulation, Leukemic; Humans; Leukemia, Myeloid, Acute; Mice; Mutation; Myeloid Cell Leukemia Sequence 1 Protein; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Staurosporine; Sulfonamides; Xenograft Model Antitumor Assays

2019
First new drug approval for AML in 15 years.
    Nature biotechnology, 2017, 08-08, Volume: 35, Issue:8

    Topics: Aminoglycosides; Aminopyridines; Aniline Compounds; Antibodies, Monoclonal, Humanized; Drug Approval; fms-Like Tyrosine Kinase 3; Gemtuzumab; Humans; Leukemia, Myeloid, Acute; Mutation; Pyrazines; Staurosporine; Triazines

2017