germanium and thiazolyl-blue

germanium has been researched along with thiazolyl-blue* in 1 studies

Other Studies

1 other study(ies) available for germanium and thiazolyl-blue

ArticleYear
Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway.
    Toxicology letters, 2011, Dec-15, Volume: 207, Issue:3

    Water-soluble germanium nanoparticles (wsGeNPs) with allyamine-conjugated surfaces were fabricated and emit blue fluorescence under ultraviolet light. The wsGeNP was physically and chemically stable at various experimental conditions. Cytotoxicity of the fabricated wsGeNP was examined. MTT assay demonstrated that wsGeNP possessed high toxicity to cells and clonogenic survival assay further indicated that this effect was not resulted from retarding cell growth. Flow cytometric analysis indicated that wsGeNP did not alter the cell cycle profile but the sub-G1 fraction was absent from treated cells. Results from DNA fragmentation and propidium iodide exclusion assays also suggested that apoptotic cell death did not occur in cells treated with wsGeNP. Addition of a necrosis inhibitor, necrostatin-1, attenuated cell damage and indicated that wsGeNP caused necrotic cell death. Cell signaling leads to necrotic death was investigated. Intracellular calcium and reactive oxygen species (ROS) levels were increased upon wsGeNP treatment. These effects can be abrogated by BAPTA-AM and N-acetyl cysteine respectively, resulting in a reduction in cell damage. In addition, wsGeNP caused a decrease in mitochondrial membrane potential (MMP) which could be recovered by cyclosporine A. The cellular signaling events revealed that wsGeNP increase the cellular calcium level which enhances the production of ROS and leads to a reduction of MMP, consequentially results in necrotic cell death.

    Topics: Animals; Calcium; Caspase 3; Cell Death; CHO Cells; Cricetinae; Germanium; Membrane Potential, Mitochondrial; Metal Nanoparticles; Necrosis; Reactive Oxygen Species; Signal Transduction; Spectroscopy, Fourier Transform Infrared; Tetrazolium Salts; Thiazoles; Toxicity Tests

2011