germanium has been researched along with gallium-arsenide* in 2 studies
2 other study(ies) available for germanium and gallium-arsenide
Article | Year |
---|---|
Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
We model and compare the thermal conductivity of rough semiconductor nanowires (NWs) of Si, Ge, and GaAs for thermoelectric devices. On the basis of full phonon dispersion relations, the effect of NW surface roughness on thermal conductivity is derived from perturbation theory and appears as an efficient way to scatter phonons in Si, Ge, and GaAs NWs with diameter D < 200 nm. For small diameters and large root-mean-square roughness Delta, thermal conductivity is limited by surface asperities and varies quadratically as (D/Delta)(2). At room temperature, our model previously agreed with experimental observations of thermal conductivity down to 2 W m(-1) K(-1) in rough 56 nm Si NWs with Delta = 3 nm. In comparison to Si, we predict here remarkably low thermal conductivity in Ge and GaAs NWs of 0.1 and 0.4 W m(-1) K(-1), respectively, at similar roughness and diameter. Topics: Arsenicals; Computer Simulation; Gallium; Germanium; Models, Chemical; Nanotechnology; Nanowires; Semiconductors; Silicon; Surface Properties; Temperature; Thermal Conductivity | 2010 |
Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.
Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates. Topics: Arsenicals; Gallium; Germanium; Indium; Molecular Structure; Nanostructures; Phosphines; Polymers; Semiconductors; Silicon; Surface Properties | 2005 |