germanium has been researched along with aminopropylsilane* in 1 studies
1 other study(ies) available for germanium and aminopropylsilane
Article | Year |
---|---|
Structural investigation of biological material in aqueous environment by means of infrared-ATR spectroscopy.
Infrared attenuated total reflection (ATR) spectroscopy may be used to investigate biological material (e.g., membranes, proteins, erythrocytes etc.) under biological conditions provided that adhesion of the sample can be achieved in aqueous environment. Uncharged lipid multilayer model membranes can be attached by hydrophobic interaction when hydrophobic internal reflection plates (e.g., ZnSe, CdTe) are used. However, if an electric field is applied across the membrane, germanium reflection elements would be preferred because of their low electric resistance (approximately 50 omega cm). This material can also be used if cells or proteins are linked chemically to the ATR plate because of the hydrophilic surface which is similar to that of glass and, thus, enables chemical modification by silanization. It has turned out that good adhesion of uncharged and negatively charged model membranes to germanium plates is achieved when they are coated with a monomolecular layer of aminopropylsilane. There is some evidence that erythrocytes remain more stable when adsorbed to a polymerized aminosilane coating (organic silanization) rather than to the corresponding monolayer (aqueous silanization). Negatively charged germanium surfaces have been obtained by succinylation of the aminosilane coating. Furthermore it has been demonstrated that proteins can be bound to the aminosilane coating by means of carbodiimide. Immobilized acetylcholinesterase was still enzymatically active. Topics: Acetylcholinesterase; Animals; Erythrocytes; Germanium; Humans; Membranes; Membranes, Artificial; Phosphatidylcholines; Proteins; Silanes; Spectrophotometry, Infrared | 1979 |